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Abstract. The rule-based CA for simulating the evacuation process of
single room with one exit is presented. Analogically to the Floor-Field
model, the presented model is based on the movement on rectangular
lattice, driven by the potential field generated by the exit. Several ideas
of decision-making allowing the agent to choose an occupied cell are
implemented, to reflect the observed behaviour in high densities. The
velocity of pedestrians is represented by the updating frequency of the
individuals. To calibrate model parameters, an experiment “leaving the
room” was organized. Based on the observed behaviour, the influence of
parameters is discussed and several modifications are suggested.
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1 Introduction

The model presented in this article is primarily designed to support the experi-
mental study of pedestrian cloud formation in front of the exit during non-panic
evacuation of single room without obstacles. Such a model should reflect im-
portant features observed in the real system ([6]). Several ways of describing
pedestrian interaction by the so called “social force” appeared in [3], being suit-
able not only for evacuation purposes ([2]), but for other crowd features as well
([13]). Such approach is very attractive but mostly not applicable for fast, ide-
ally real-time simulations. In this case, the computational power of Cellular Au-
tomata should be used. For elaborate summary of CA phenomena in pedestrian
dynamics we refer the reader to [10] or [12].

The inspiration for the model presented in this article is the Floor-Field
model ([5], [11]) and its implementation in F.A.S.T ([9], [10], [13]). Similarly to
this model, the potential field is considered, but unlike these models the desired
line formation is reached using “bounds” rather then the dynamical field. This
is closely related to the possibility of choosing an occupied cell ([4]). To handle
the problem of the diagonal movement symmetrization (discussed e.g. in [7],
[9], [14], or [18]) the time penalization of diagonal movement is implemented.
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Inspired by [8], [16], and [17], simple movement prediction is taken into account.
Furthermore, essential change in the potential iso-curves solves elegantly the
problem of wall repulsion mentioned in [1].

2 Description of the Model

The presented model is designed to describe and simulate the following situation:
Consider a rectangle room with one exit (see Figure 1), containing given number
of persons. People inside the room are motivated to exit the room as fast as
possible.

Fig. 1. Experiment was performed in a rectangle room 13 m long and 7 m wide.

2.1 Space

The operational space of the simulation is divided in square-shaped cells with
the edge length corresponding to 0.5 m. Each cell x = (xcolumn, xline) may be
either empty or occupied by one agent, which is indicated by the occupation
number n(x), where n(x) = 0 if the cell is empty and n(x) = 1 otherwise. Here
we note, the exit cell e is presented as always empty, keeping the rule that only
one agent can enter the cell at the time. Each cell carries the potential U(x)
indicating the attractiveness of the cell for the agent (see [5] for details), which
can be defined as

U(x) = −F · ϱ(e,x) , (1)

where F is the constant determining the potential strength and ϱ is a “distance”
of the cell x to the exit cell, being often chosen es Euclidian metric, i.e.

ϱ(e,x) =
(
|ecolumn − xcolumn|2 + |eline − xline|2

) 1
2 . (2)

For illustration purposes the coordinates of the exit in presented Figures are set
to e = (0, 0). To the static properties of the cell belongs the cell type number t(x),
which determines, whether the agent can enter the cell (t(x) = 1), e.g. floor cell,
exit, or not (t(x) = 0), e.g. wall, barrier.

Besides the occupation number, the dynamical status of the cell is deter-
mined by the prediction number r(x) ∈ {0, 1, . . .}, which denotes the number



of pedestrians being predicted to enter the cell x. As we will see in (4), the
maximum number of entering agents is 8. The principle of prediction will be
explained below.

2.2 Decision Process – Choosing the Target Cell

The essence of the CA dynamics lies in the rules, according to which the agent
chooses next target cell. In this project, the agent decides stochastically, i.e. the
probability pd(x) of choosing the cell x+d from the “target” surrounding ST (x)
depends on the current state of the “reaction” surrounding SR(x):

pd(x) = Pr {x+ d|SR(x)} . (3)

In this article, the surrounding according to Moore’s definition with range 1 is
chosen for both, the target and the reaction surrounding, i.e. ST (x) = SR(x) =
x+ SM , where

SM = {(−1, 1); (0, 1); (1, 1); (−1, 0); (1, 0); (−1,−1); (0,−1); (1,−1)} (4)

(see Figure 2). Here, d ∈ SM is referred to as direction. The definition (4) implies
that the agent cannot choose his current position x during the decision process
(it does not mean that he has to move; see subsection 2.3).

Fig. 2. Moore’s surrounding with range 1 of cell x, with indexation used in this article.

Let us now denote dr(i) the currently predicted direction of the agent i. The
movement prediction from the view of the agent i then is

r′i(d) = r(x+ d)− δd,dr(i) , (5)

where δi,j is the Kronecker’s symbol. For all d ∈ SM the indicator r̃i(d) = δ0,r′
i
(d)

indicates, whether the cell x+d is predicted to be entered by another agent than
i. Using the notation presented above, the probability that the agent i sitting in
the cell x chooses the direction d is given as

pd(x) = N · t(x+ d) · exp{α · U(x+ d)}×
×[1− β · n(x+ d)] · [1− γ · r̃i(d)] , (6)

where N is the normalization constant ensuring that
∑

d∈UM
pd(x) = 1, and

coefficients α, β, γ, are coefficients of sensitivity to the potential, occupation
number, and prediction number. These parameters are to be determined later
and their influence is demonstrated in Figure 3.



Fig. 3. Example illustrating principle of decision of one pedestrian. Subfigure A visu-
alized wider surrounding of an agent in the cell x. Integer numbers represent agents
and dashed arrows their predicted movement. The probability distribution pd(x) given
by (6) is determined by potential, occupation and conflict prediction. The subfigure
B visualizes these parameters. The darker color the higher potential (closer to exit),
hatched area means penalization in stated category. The final cell attractivity strongly
depends on coefficients of sensitivity to stated parameters. While potential represent
static conditions, occupation and prediction of conflict reflect agent strategy. Final
probabilities for different settings of sensitivity parameters β, γ are shown in subfigure
C. For each of them, 2000 decisions were divided into the cells according to (6). The
values of potential strength is F = 3, and the potential sensitivity α = 1. The potential
sensitivity plays an important role in the heterogenous system (αi differs from agent
to agent), which is not the demonstrated case.

2.3 Agent Movement and Conflicts

The goal of this subsection is to explain the interaction of all agents within
considered time period as a whole. One update of the system can be divided in
four phases:

1. Selection of active agents
2. Decision process
3. Conflicts solution and motion
4. Time actualization

1. Selection of active agents means that only agents that are supposed to
move at the considered time according to their frequency are activated (similar
approach has been applied in [14] to handle the diagonal movement symmetriza-
tion). Each agent i has its own updating frequency fi giving the number of



updates during one time unit. In principle, whenever the agent moves, or tries
to move, at the time t, the time of his next activation is set to t+ f−1

i . The only
situation, when this rule changes, is after the diagonal movement. Because the
diagonal movent (i.e. in directions (−1, 1), (1, 1), (−1,−1), or (1,−1)), is

√
2-

times longer, it takes
√
2-times more time. This leads to the diagonal movement

time-penalization, and the next activation time is set to be t+ qf−1
i , where q is

the rational approximation of
√
2, e.g q = 3/2. The rational approximation of√

2 is necessary, if we want to keep “sufficiently” discrete structure of time for
long period.

2. Decision process of each agent i proceeds independently and consists in
choosing the direction according to given rules explained in section 2.2. If the
target cell is empty, the agent is added to the waiting list of the cell. If the target
cell is occupied by another agent j the bound of i to j is created. Agent j is called
the blocker and agent i becomes bounded. The bound holds until the next update
of the bounded agent i or until the motion of the blocker j.

3. Conflict solution and motion. It is obvious that the two-dimensional struc-
ture of the problem connected to the independent decision of agents leads to
variety of conflicts.

a) More agents choose the same unoccupied cell (the waiting list of some cell
contains more then one agent). In this case, with probability µ, playing role of
the friction parameter (taken from [13]), the movement of all agents is disabled
– non of the agents enters the cell. Otherwise, i.e. with probability (1−µ), one of
the waiting agents is chosen randomly to enter the cell, the others don’t move.

b) The agent chooses an occupied cell. In this case, the agent i predicts the
movement of the blocker j and wants to take his place. If the blocker j moves
(i.e. is the single agent to enter the target cell or wins the conflict described in
a)), the bounded agent i tries to enter his target cell. Again, if he is the only
bounded agent to j, there is no conflict. If more then one agent are bounded
to j, the occurring conflict is solved analogically to the conflict a). This rule is
applied recursively to all bounded agents.

Here we note, that during the conflict solution of type b) even a non-active
agent can move, if he is bounded to the blocker. This is illustrated by an example
in Figure 4. The principle of conflict solution and bounds during one update is
illustrated in Figure 5.

3 Calibration of the Parameters

For parameters calibration, an experiment “leaving the room” was organized. 28
participants were arranged in a room with area 13m× 7m according to specific
setting (see fig 6). After initiation, everyone started to move towards the doors.

Participants were only briefly instructed to follow three basic rules:

– leave the room as fast as possible
– do not run, just walk
– avoid physical contact



Fig. 4. Example illustrating principle of bounds. Two agents 1 and 2 with frequencies
f1 = 1, f2 = 1/2 are activated in time t=0 and decide to enter the same cell (0, 0),
agent 1 wins. Next update-time of agent 1 is set to t = 3/2 because of the diagonal
movement, the agent 2 waits until t=2. At t = 3/2 agent 1 decides to enter the cell
(1,1) occupied by agent 2 and gets bounded to 2. At t = 2 agent 2 decides to enter
(0,0) and gets bounded to agent 1. At t = 5/2 agent 1 cancels his bound and moves
to (1,0). Due to the bound, agent 2 moves to (0,0) and his next-update time is set to
t = 5/2+2(3/2). The multiplication by 3/2 is due to diagonal movement penalization.

Fig. 5. Example illustrating principle of waiting lists and bounds during one update.
8 agents are depicted at their positions in subfigure A; every agent chooses the target
cell and is either added in waiting list (triangles) or bounded to the blocker (squares)
as shown in subfigure B. In this case, the agent 7 is in the waiting list of cell (-1,1),
agents 3 and 6 in the waiting list of cell (-1,0), agent 4 and 2 are bounded to agent 2
etc.. After conflict solution in waiting lists (subfigure C) the bounds induce conflict in
cell (-3,0), which is solved analogically (subfigures D and E).



Fig. 6. Initial setting of the experiment, black circles represent pedestrians.

These restrictions protected the participants from injuries, they were not
motivated to furious evacuation. Following phenomenons were observed (see left
part of Figure 7):

1. Pedestrians hold the initial formation and wait rather than walking around
the crowd → occupation is not important (β = 0.2), but the prediction and
bounding principle is significant (γ = 0.8)

2. Pedestrians are not forced to form a cluster near exit; multi-line (chaotic)
queue is formed instead

3. Unsolved conflicts appeared only rarely → low friction parameter µ
4. The movement is relatively deterministic (F = 3)

Furthermore, considering the essence of the experiment, strong moral barriers
connected to social conventions avoided the participants to create semi-spherical
cluster in front of the exit, which is expected in panic-like situations (see e.g. [2],
[12], etc.). The participants were not motivated to leave the room earlier than
others, therefore there has not been observed any drastic fight at the door. Such
behaviour inspired us to deform the spherical form of potential iso-value curves
to

ϱ(e,x) =

√
10(eline − xline)

2

ecolumn − xcolumn
+ (ecolumn − xcolumn)

2 . (7)

These potential iso-value curves are presented in Figure 8. Here we note that the
equation (7) is applicable to define the required potential modification only for
normal conditions without obstacles, where the average direction of pedestrian
cloud centre towards exit is in the positive x direction. The generalization to
more complex geometries requires more detailed experimental study and further
discussion.

At the end of experiment, running was allowed. Physical contact was still for-
bidden, but participants were not able to keep it. These physical forces caused
that more than one pedestrian occupied one cell sometimes. On the other hand,
expected phenomenons as the spherical shape of cluster near the exit and the
inability to hold formation were observed (see right part of Figure 7). The move-
ment under such panic-like conditions is described well using spherical potential
(equations (1), (2)). To avoid conflict, runners were quite cautious; both occu-
pation and prediction numbers were significant (β = 0.95, γ = 0.95).



Walking Running

Fig. 7. Visualization of progress of one round, pedestrians walked (left) and run (right).
Pictures A come from frontal camera, 9 (resp. 6) seconds after initialization, when first
person approaches the exit and 15 (resp. 8) seconds after initialization, when compact
cluster is developed. Subfigures B project previous pictures to lattice representation
and subfigures C represent corresponding realization of the simulation. One time unit
of the simulation corresponds to 0,7 s. The time interval between creating the cluster
and completing the evacuation was used to create the time-span of the model, because
this article focuses on the shape of the cluster in front of the exit. Mean actualization
frequency was set to 1 time unit.

spherical modified

Fig. 8. Demonstration of suggested potential.

4 Conclusion

A concept of CA model of pedestrian crowd modeling has been introduced,
which brings new elements in Floor Field model. The principle of waiting list
and bounds has been defined. This allows the agent to choose an occupied cell.
The innovative idea of creating bound to the blocking agent reflects the observed



line formation and spontaneous queuing typical for the crowd movement with
negligible effect of panic. We believe that the proposed mechanism of bounds is
very close to the unconscious behaviour of pedestrians in high densities.

The pedestrian velocity is represented by the updating frequency being in
this article defined in time discrete way. Nonetheless, it is possible to generalize
it in the time continuous way, which meets the presumption that the pedestrian
desired velocity is Gaussian distributed.

For the calibration of model parameters the experiment “leave the room” has
been performed. Key information has been found to calibrate model parameters
to the non-panic simulation of room evacuation. Based on the measured data,
the shape of the potential iso-value curves needs to be modified due to the
effect of moral barriers connected to social conventions, when the situation is
not intensely panic, e.g. controlled evacuation. Proposed rules including bounds
and prediction improve the model in spontaneous line formation, but only the
simulation with modified potential corresponds to the observed non-spherical
shape of the pedestrian cloud in front of the exit.

Here we note that only the macroscopic behaviour represented by the shape
and velocity of the pedestrian “cloud” was considered for the calibration of
parameters. The microscopic behaviour of single individuals slightly differs from
the observed behaviour during the experiment. Although the model has been
designed to describe important phenomena of one specific experimental study,
we believe that ideas presented here can be used for simulating the movement
in more complex situations.
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