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Abstract 

We introduce the spatially-discrete time-continuous particle system whose intelligent elements are interconnected by the 
psychological short-ranged interactions and stochastically influenced by the nonzero level of psychological strain. Dividing the 
circular lattice into the regions of different strain-levels we detect the strong traffic congestion propagating through the entire 
system. As follows from the relevant statistical analysis of traffic data, both the macroscopic and microscopic structures of the 
above-mentioned cellular model are in a good agreement with those observed in freeway samples. 
© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Organizing Committee. 
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1. Terminus a quo 

The first attempts to describe certain vehicular ensembles systematically, i.e. using mathematical techniques, 
were noticed more than seventy years ago. Indeed, in 1935 there was published the first scientific paper 
(Greenshields, 1935) on elementary relations among traffic quantities. Bruce Douglas Greenshields – author of this 
text – was probably the first man who carried out the traffic flow measurements (using photographic measurement 
methods) and predicted the linear speed-density relation. Many mathematicians, physicists, or traffic engineers have 
followed up to his pioneering work since then. Recently, knowledge on behavior of traffic systems is very extensive 
(see reviews May, 1990; Chowdhury, 2000; Helbing, 2001 or Kerner, 2004) as well as mathematical or/and physical 
methods used for traffic modeling.  

Many contemporary treatises dealing with physics of traffic discuss possibilities for application of 
thermodynamic approaches to the traffic modeling (see Krbálek, 2004; Sopasakis, 2004; Krbálek, 2007; Mahnke, 
2007; Krbálek, 2008 and Krbálek, 2009). These attempts have been partially successful predominantly if the local 
thermodynamics was adopted. Specifically, introducing the socio-physical particle scheme with mutual interactions 
described by the repulsive forces among the subsequent elements one can obtain surprisingly good analytical 
estimations for microscopic traffic quantities or their statistical distributions (see Krbálek, 2007 and Krbálek, 2009). 
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In spite of the fact that the initial scheme is of thermodynamic substance the alternative formulation of the model 
may potentially lead to the effects of crowding. Investigation of that hypothesis is the subject of the next sections.  

2. Traffic model formulation 

In this section we introduce an original variant of numerical/analytical traffic simulator whose background is 
space-discrete. Contrary to the famous cellular automata: Nagel-Schreckenberg’s model (see Nagel, 1992 for 
details), Fukui-Ishibashi’s (see Fukui, 1996), and totally asymmetric simple exclusion process (see Derrida, 1992), 
our simulation scheme is of thermal-like nature and takes some psychological aspects of traffic into account.  

Consider a circular cellular freeway of circumference ݊ divided into ݉ equivalent cells of the same length (see 
Figure 1). Above that, define ݊ dimensionless vehicles placed inside the lattice so that each cell can be occupied by 
one car only. Thus, every particle (car) is unambiguously described by the corresponding angle coordinate ߴ௜ ∈[0, ݅ which is understood as a discrete quantity, i.e. for every (ߨ2 = 1,2, … , ݊ it holds 

 1 ≤ ௜ߝ = 1 + ߨ௜2ߴ݉ = 1 + ඌ݉ߴ௜2ߨ ඐ ≤ ݉,             (1) 

 
where ߝ௜ represents the numerical order of cell that is occupied by the ݅th particle and brackets stand for the lower 

integer-part of a given real number. Denote ߴ௡ାଵ = ଵߴ +  for convenience. Thus, the entire system is developing ,ߨ2
in 2݊-dimensional phase space whose points are described by the vector ⃗ߴ = ,ଵߴ) ,ଶߴ … , ݒ⃗ ௡) of positions and vectorߴ = ,ଵݒ) ,ଶݒ … , (௜ݎ)ܸ ௡) of velocities. Introducing the two-body repulsion potentialݒ = ௜ିݎ ଵ, where  

௜ݎ  = ߨ2݊ ௜ାଵߴ) −  ௜)             (2)ߴ

 
represents a circular distance between (݅ + 1)th and ݅th particles, the associated socio-physical Hamiltonian of 

the system introduced reads  
 = 12 ෍(ݒ௜ − ଶ௡(ݒ̅

௜ୀଵ + ܥ ෍ ௡.(௜ݎ)ܸ
௜ୀଵ              (3) 

 
Here the former reflects the fact that drivers moving with optimal velocity ̅ݒ (being sufficiently far from other 

cars, where ܸ(ݎ) ≈ 0), do not accelerate/decelerate. The latter summarizes all two-body repulsive potentials in the 
global potential energy  
 ܷ = ෍ (௜ݎ)ܸ = ෍ ௜ݎ1

௡
௜ୀଵ .             (4) ௡

௜ୀଵ  

 
Its specification follows directly from the previous works (Krbálek, 2004, 2007). ܥ is a positive constant.  

In fact, the above-mentioned definition is deterministic and does not reflect stochastic features of vehicular 
systems. Therefore we introduce the thermodynamic alternative of the model (being inspired by the articles 
Sopasakis, 2004; Helbing, 2004; Helbing, 2006; Krbálek, 2007) where the entire system is exposed to a random 
noise of thermodynamic origin. Level of such an external fluctuation-impact used to be quantified (in statistical 
disciplines) by the thermal parameter ܶ − usually called a thermodynamic temperature. In this article we will use the 
reciprocal value ߚ = (݇஻ܶ)ିଵ instead. Constant ݇஻ is the usual Boltzmann factor. We add that the thermodynamic 
component leads the systems to the state of statistical balance where the statistical distributions are fixed, in spite of 
the fact that individual quantities (locations, velocities, headways) are varying.  

In the socio-physical disciplines (see Helbing, 1995) the thermal parameter ߚ ≥ 0 can be interpreted as a 
psychological coefficient describing a level of the mental pressure under which the agent (here driver) is while 
driving his/her car. Such a mental strain coefficient ߚ can be defined either globally (which means that all drivers 
are under the same strain) or individually (ߚ is an individual property of each driver) or locally (for chosen part of 
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Figure 1. Particles (Cars) on a Multi-Segment Cellular Ring. The locations of particles are discretized and subjected to the simple exclusion 
rule, which means that every cell can be occupied by one car only. The ring is divided into the regions of different psychological loads 
quantified by the different values of strain-parameter ߚ.  

freeway, ߚ is fixed to a constant value). Implementing such a thermal component into the originally deterministic 
system we are obtaining the chaotic ensemble whose steady state is described statistically. It means that the 
microscopic quantities (gaps among the cars, velocities of single vehicles, time intervals among the subsequent cars 
and so on) measured in the steady state are determined by means of associated probability densities. This fact fully 
corresponds to the ascertainments observed in traffic experiments (see Sugiyama, 2008 and Orosz, 2009). 

For purposes of this article we will consider a locally-depending-strain version of the previously-mentioned 
model (see also Figure 1). It means that we divide the whole circular freeway into two segments (similarly to the 
approach in Nishimura, 2006). In the first one (ranging from zero angle ߮ = 0 to ߮௖) the mental strain coefficient is 
preset to ߚ଴, whereas in the second segment (ranging from ߮௖ to ߮ =  ௖. We call this part the criticalߚ we choose (ߨ2
region. That choice corresponds to the empirical findings (see Krbálek, 2009) that the different traffic phases 
(especially free vs. congested regimes of traffic) show significantly dissimilar microstructures (i.e. different 
probability densities for individual traffic quantities).  

3. Mean-segment approximation of the MSCTT-model 

If aiming to predict the steady-state of our multi-segment cellular thermal-like model (abbreviated as MSCTT-
model) described above we introduce the corresponding partition function which is of the form  
 ܼ௡ = ෍ ෍ ߜ ൭2ߨ − ෍(ߴ௜ାଵ௡

௜ୀଵ − ௜)൱ ෑߴ exp ൤− ௜2ߚ ௜ݒ) − ଶ൨௡(ݒ̅
௜ୀଵ  ෑ exp ቂ−ߚܥ௜ܸ ቀ2݊ߨ ௜ାଵߴ) − ௜)ቁቃ             (5),௡ߴ

௜ୀଵణ೔௩೔  

 
where temperature-like parameter ߚ௜ is chosen from the set {ߚ଴,  ௖} according to the actual position of ݅thߚ
agent/particle. We remark that symbol ݔ)ߜ −  .represents the generalized function called Dirac delta-function (ߤ
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Figure 2. Trajectories of the Particles in Multi-Segment Thermal-like Cellular Model. The segments of different strain-coefficients are 
distinguished by colours. In the specific regions one can detect the local traffic congestions propagating through the entire system.  

Restringing this partition function to the inner part (being sufficiently far from the segment boundaries) of the 
specified ring-segment (where ߚ௜ is constant) and eliminating the velocity part of ܼ௡ one can approximate the time-
evolution in the chosen segment by the one-dimensional thermodynamic gas. It means that the global steady-state of 
the above-mentioned system can be approximated by the local thermal equilibria of the partial systems 
(corresponding to the individual segments of the ring). Now, applying certain routines of statistical physics (see 
[Krbálek 2007] or [Bogomolny 2001]) we predict that steady state of our multi-segment cellular model should be 
described by the following statistical description. The probability density for distance among successive particles in 
the steady states reads 

(ݎ)℘  = (ݎ)ߠ ܣ exp ൤− ݎߚ − ൨ݎܤ ,                          (6) 

 
where the symbol (ݎ)ߠ corresponds to the Heaviside step-function and two constants   
ܤ  = ߚ + 3 − expൣ−ඥߚ൧2 ଵିܣ            , = 2 ܤߚ  ൯             (7)ܤߚଵ൫2ඥܭ

 
assure the proper normalization and the scaling to the mean distance equal to one (in consonance with the 

original formulation of the model). The function ܭଵ(ݔ) represents the modified Bessel’s function of second kind and 
of first order. For completeness, we denote that the analytical estimation (6) has been obtained under these 
conditions: we consider a sufficient amount of particles on the ring, number of cells should be significantly larger 
than number of particles and finally the analyzed region of the unit circle should be sufficiently far from segment 
boundaries.   

4. Numerical representation of the MSCT-model 

For numerical investigations of the above-described system we use the time-tested scheme based on the Monte 
Carlo methods, specifically the so-called Metropolis algorithm. Here we briefly summarize the corresponding 
simulation rules.  In the first instance we generate an initial configuration of particle locations ⃗ߴ = ,ଵߴ) ,ଶߴ … ,  .(௡ߴ
All the time we use the equidistant inter-particle angles. Thereafter all particle positions are repeatedly updated 
(25000 updates) according to the following rules:  

 Using formula (4) the initial potential energy ଴ܷ for the actual set of locations ⃗ߴ = ,ଵߴ) ,ଶߴ … ,  ௡) isߴ

calculated.  
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 We pick an index ℓ ∈ {1,2, … , ݊} at random. 

 The value of the strain coefficient ߚℓ is adjusted to the actual localization ߴℓ of the ℓth vehicle. 

Specifically:  
௖߮)ߠ (ℓߴ)ߠ ଴ߚ= ℓߚ  − (ℓߴ + ℓߴ)ߠ ௖ߚ − ߮௖) ߨ2)ߠ −  ℓ).             (7)ߴ
 

 We draw a random number ߜ equally distributed in the interval (0,1). 
 The anticipated length of jump is discretized according to the formula  

 ω = ߨ2݉ ቒ݉݊  ቓ.             (8)ߜ

 

 We compute an anticipated position ߴℓᇱ = ℓߴ + ߱ of the ℓth element. Because of singularity in the potential 

energy (4) the model particles cannot change their order. Therefore we accept ߴℓᇱ  only if ߴℓᇱ <  .ℓିଵߴ
 We calculate a value of potential energy ܷ′ determined for configuration (ߴଵ, ,ଶߴ … , ,ℓିଵߴ ,ℓᇱߴ ,ℓߴ … ,  .(௡ߴ

 If ܷᇱ < ଴ܷ the ℓth particle position takes on a new value ߴℓᇱ . If ܷᇱ ≥ ଴ܷ then the Boltzmann factor ݍ =exp[−ߚℓ(ܷᇱ − ଴ܷ)] should be compared with another random number ݃ equally distributed in (0,1). 

Provided that the inequality ݍ > ݃ is fulfilled the ℓth particle position takes on the new value ߴℓᇱ  too. 

Otherwise, the original configuration (ߴଵ, ,ଶߴ … ,   .௡) remains unchangedߴ

The outlined scheme ensures a relaxation of ensemble into the steady state in which the socio-physical energy ܷ 
fluctuates around a constant value being independent of an initial configuration of elements. After reaching such a 
probability-balance (i.e. after approximately 10000 updates of configuration) the ensemble lingers in this steady 
state until the simulation is interrupted. 
  

 

Figure 3. Density Profiles of Multi-Segment Thermal-like Cellular Model. We plot the local density of particles depending on angular 
position ߮ of the circular segment. The critical region is delimited by the angles ߮ ∈ [270°, 360°) and weighted by the strain 
coefficient ߚ௖ (see legend). The strain coefficient in the unencumbered region ߮ ∈ [0°, 270°) is zero. The global density of the 
analysed ensemble is 0.05.  
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Figure 5. Distance Clearance Distribution inside the Critical Zone. Bars represent the gaps among the subsequent particles of model 
(analysed inside the critical region where ߚ௖ = 1.0), whereas the bullets correspond to the inter-vehicle clearances measured for the 
metastable traffic regimes, i.e for densities 35-38 veh/km/lane. The curve visualizes the analytical estimation (6) specified for ߚ = 1. 

 

5. Analysis the steady state of the MSCT-model 

In this section we will try to analyze the steady state of the model defined. For all numerical simulations 
presented in our article we use the following settings: ݊ = 200, ݉ = 4000, ߮௖ = ଴ߚ and finally ,2/ߨ3 = 0. Mental 
strain coefficient for the critical region (i.e. for region of angles ߮ ∈ [߮௦,    .is varied (see text and figures below) ((ߨ2

In the first instance we will investigate the macroscopic effects detected in the above-mentioned model. 
Surprisingly, in spite of thermal nature of the model the macroscopic analysis uncovers the effects of aggregation 
leading to the congested traffic states. This phenomenon is apparent when investigating the particle trajectories (see 
Figure 2). Note that the local traffic congestions are propagating through the whole circle, i.e they are detectable not 
only in the critical region but also in the free zone (where ߮ ∈ [0, ߮௦)). Another way how to inspect the states of 
high saturations is to examine the local density of particle. For purposes of this observation the local and global 
densities are defined according to the formulae (9) 

 

Figure 4. Distance Clearance Distribution inside the Free Zone. Bars represent the gaps among the subsequent particles of model (analysed 
inside the unencumbered region), whereas the bullets correspond to the inter-vehicle clearances measured on European freeways. Those real-
road data have been chosen from the region of small densities, where traffic flows are fully fluent. The curve visualizes the analytical 
estimation (6) specified for ߚ = 0. 
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Figure 6. Distance Clearance Distribution inside the Critical Zone. Bars represent the gaps among the subsequent particles of model 
(analysed inside the critical region where ߚ௖ = 1.5), whereas the bullets correspond to the inter-vehicle clearances measured for the 
saturated traffic regimes, i.e. for densities 62-67 veh/km/lane. The curve visualizes the analytical estimation (6) specified for ߚ = 1.5. 

(߮)୐ߩ  = 1݉  card ቄߴ௜ | ߮ < ௜ߴ ≤ ߮ + ୋߩ       ,10ቅߨ = ݊݉  .              (9) 

 
As visible in the figure 3, although the initial configuration of the model was uniform, i.e. the particle/vehicle 

locations were equidistant; the steady-state density is rapidly influenced by the varying values of psychological-
pressure coefficient. Typically the effect of strong psychological strains causes the accumulation of particles in front 
of the critical region and leads to the intensive traffic saturation inside the segment. Evolving shock waves are 
distinguishable even inside the preceding free zone (where density of particles is smaller). This effect fully 
corresponds to the traffic reality.  

The interesting agreement between the MSCT-model presented and the real-road traffic systems can be found if 
investigating the corresponding microstructures. Here we are focused predominantly on the so-called clearance 
distribution, i.e. probability density for inter-vehicle gaps. In the figures 4-7 we explore such a statistical quantity in 
detail. Specifically, we compare the clearance distribution between the free zone and critical zone, where the mental 
strain coefficient is varying: ߚ௖ = 1, ௖ߚ = 1.5, ௖ߚ = 2, respectively. The detailed analysis of traffic data (gauged by 
induction double-loop detectors on European freeways) uncovers that clearances among vehicles are in excellent 
agreement with those measured in the steady state of our multi-segment model. To be concrete, an arbitrary regime 
of vehicular traffic can be identified with the specific choice of MSCT-parameters so that the relevant micro-
statistics are very similar. 

6. Summary and conclusions 

We have introduced the multi-segment cellular thermal-like model (MSCT model) whose steady-state properties 
(both, micro-statistics and macro-effects) are in a good agreement with the relevant properties of vehicular streams. 
Comparisons between MSCT model and traffic reality clearly show that in spite of the thermal nature of the MSCT 
model, there is a direct link between the specific traffic states and associated steady states of MSCT model. 
Furthermore, such a correspondence has been achieved by applications of socio-physical approaches, when every 
agent of the system is limited by the agents occurring in his/her neighborhood (short-ranged repulsive interactions) 
and the subsequent decision making process of the agent is influenced by an individual level of mental strain. 
Reformulating those psychological aspects in terms of mathematical (or physical) rules we have obtained both, the 
numerical procedure leading to the steady state and analytical approximations for some statistical quantities 
describing the MSCT microstructure. This approach hopefully opens a new perspective in traffic modeling.  
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Figure 7. Distance Clearance Distribution inside the Critical Zone. Bars represent the gaps among the subsequent particles of model 
(analysed inside the critical region where ߚ௖ = 2.0), whereas the bullets correspond to the inter-vehicle clearances measured for the over-
saturated traffic regimes, specifically for densities 77-82 veh/km/lane. The curve visualizes the analytical estimation (6) specified for ߚ = 2. 
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