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Abstract

We consider the one-dimensional totally asymmetric simple exclusion process

(TASEP model) with open boundary conditions and present the analytical

computations leading to the exact formula for distance clearance distribution,

i.e. probability density for a clear distance between subsequent particles of

the model. The general relation is rapidly simplified for the middle part of the

one-dimensional lattice. Both the analytical formulas and their approximations

are compared with the numerical representation of the TASEP model. Such a

comparison is presented for particles occurring in the internal part as well as

in the boundary part of the lattice. Furthermore, we introduce the pertinent

estimation for the so-called spectral rigidity of the model. The results obtained

are sequentially discussed within the scope of vehicular traffic theory.

PACS numbers: 02.50.−r, 05.45.−a, 89.40.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction and motivation

The effect of queuing is one of commonly appearing phenomena in nature. It can be disclosed

in microbiological systems, societies of animals, computer networks, public transport systems,

car parking manoeuvres, and many others. In recent years, queuing has attracted attention

of many physicists and mathematicians. It is well known that many of above-mentioned

systems belong to the same class of mathematical tasks. A convenient way of investigating

such systems in detail can be found in space-discrete and time-continuous one-dimensional

models based on asymmetric exclusion processes (ASEP). Indeed, the family of asymmetric

exclusion processes is as wide ranging as the family of its applications. Specifically, the ASEP

models have been successfully used for the description of protein synthesis [1, 2], polymers in
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Figure 1. The empirical flow–density relation and relevant schematic representation. The

dependence of the traffic flux J on the traffic density ̺ for realistic traffic flows is used to be

compared to a mirror image of the Greek letter λ (see [15] or [16]). The relation J = J (̺)

extracted from the induction-double-loop-detector data is visualized in the inset.

random media [3], fluctuations in shock fronts [4–7], gel electronics [8], in molecular biology

[9], and finally in physics of traffic [10–13] or [14].

In this paper, we focus predominantly on those aspects of cellular modeling having a

vehicular-traffic interpretation. With respect to the fact that the macroscopical behavior of

the totally asymmetric simple exclusion process (TASEP) (represented for example by the

fundamental relation between the flux and density of the model) corresponds to that detected

in the freeway samples (compare figures 1 and 4 for illustration), it is meaningful to consider

the TASEP model as a possible choice for a one-lane traffic simulator. However, besides

the confrontation of macroscopic quantities, it is indispensable to make a comparison of

microscopic quantities. Recently, extensive investigations of traffic data ([18–23] or [24])

provided a good insight into the microstructure of traffic samples. It has been demonstrated in

some of the above-mentioned articles that inter-vehicle gap statistics (clearance distribution)

in real-road traffic can be estimated very well by the one-parametric family of functions:

℘(r) = A2(r) e− ν
r e

−Br , (1)

where

B = ν +
3− e

−
√

ν

2
, (2)

A−1 = 2

√
ν

B
K1(2

√
Bν). (3)

Equation (1) describes an analytical prediction derived for thermal-like traffic gas, whose

steady state is in a good consonance with experimental traffic data. We remark that the

functions 2(x)and Kλ(x) represent the Heaviside step-function

2(x) =
{
1, x > 0

0, x 6 0

2
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Figure 2. Clearance distribution for real-road traffic. The curves visualize the analytical

estimations (1) of the inter-particle statistics obtained for the densities indicated in the legend.

and the modified Bessel’s function of the second kind (MacDonald’s function), respectively.

Furthermore, the distribution ℘(r) fulfills two normalization conditions:
∫

R

℘(r) dr = 1 (4)

and ∫

R

r℘ (r) dr = 1. (5)

The latter represents a scaling to the mean clearance equal to 1. We add that the one and

only parameter ν is related to the traffic density ̺ (see [25] for details). Roughly speaking,

such a parameter (called a mental strain coefficient) reflects a rate of psychological pressure

which the car drivers are under during driving manoeuvres. The changes of traffic status from

free flows to congested flows and vice versa are accompanied by the adequate changes of

the mental strain coefficient ν, i.e. by the adequate changes of clearance distribution. The

chosen representatives of the relevant analysis are displayed in figure 2. Here, one can detect

the basic probabilistic trends of distances among succeeding cars. Whereas in the region of

small densities (free traffic regime) the relevant probability density is essentially exponential

(which fully corresponds to the fact that cars interactions are negligible), the distribution ℘(r)

changes rapidly if congested data are observed. In this case, the stronger mutual interactions

among vehicles lead to hardcore repulsions in the system, which results in the fact that

limr→0+ ℘(r) = 0. As discussed in [25], the intermediate region of metastable traffic states

shows a substantial growth of the parameter ν. This is influenced by the fact that the driver,

moving quite fast in relatively dense traffic flow, is under considerable psychological pressure.

After the transition from the free to congested regime, the pressure momentarily declines

because of a decrease in the mean velocity. Finally, if the traffic flow becomes denser and

denser, the mental strain coefficient ν is increasing further. This finally culminates in the

creation of stop-and-go traffic waves.

The main goal of this paper is to describe some correspondences between the

microstructure of the asymmetric simple exclusion model and real-road traffic. For this

purpose, we will compare (in the first part of this work) the relevant clearance distributions,

3
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α dt

p dt
β dt

Figure 3. Definition of the TASEP. The configuration visualized can be identified with the vector

C = (0, 3, 1, 2, 1, 2, 1, 1, 2).

i.e. probability densities for clear gap among all pairs of succeeding particles/vehicles.

Subsequently we will analyze the associated spectral rigidities of both systems and will

discuss their similarities.

2. The TASEP with open boundaries

Consider a chain of length N containing N equivalent cells and define three fixed parameters

α, β, p ∈ [0, 1]. Let each cell to be either occupied by one particle or empty. During

the infinitesimal time interval dt , each particle hops to the immediate site (in the defined

direction) with probability pdt if the target site is empty. In the opposite case (if the target

site is occupied), the particle does not change its location. If the first cell (ℓ = 1) is empty, a

new particle is injected into the chain with probability αdt. Similarly, if the last cell (ℓ = N)

is occupied, the relevant particle leaves the chain with probability βdt. This definition can be

generalized if needed; however, for all purposes the original formulation is fully sufficient.

Furthermore, we will use (without loss of generality) the re-scaled variant of the model where

p = 1.

The sketched rules define a simple driven lattice model of one-lane traffic whose elements

are hard-core-repulsed by ‘implicit forces’ derived from the above-mentioned exclusion

rules. A great merit of such a model lies in the exact solvability of the associated steady

state. Indeed, two alternative methods for the exact solution of the TASEP are outlined in

[26, 27]. For the purpose of this research, we consistently use the methods based on thematrix

formulation introduced in [27] and elaborated in [28] and [29]. According to this matrix

method, we consider the matrices D,E (infinite dimensional, in general) and vectors 〈w| and
|v〉 satisfying the following algebraic rules:

DE = D + E, (6)

〈w|E =
1

α
〈w|, (7)

D|v〉 =
1

β
|v〉. (8)

Although each configuration of the model can naturally be described by the binary sequence

T = (τ1, τ2, . . . , τN ) ∈ {0, 1}N ,

4
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it is profitable to use the following convention. Let the symbol C =
(n1,m1, n2,m2, . . . , nq ,mq) denote the configuration of the TASEP chain such that (starting

from the initial cell of the chain) n1 is the maximal number of occupied cells (i.e. the (n1 +1)st

cell is empty), m1 is the maximal number of empty cells (starting from the (n1 + 1)st cell),

when the (n1 + m1 + 1)st cell is occupied, and so on. Thus,
∑

i ni +
∑

j mj = N. The

previous definition (visualized for lucidity in figure 3) corresponds unambiguously to the

relevant arrangement of the particles inside the TASEP chain, which means that there exists

some bijection between T and C. Moreover, it has been proved in [27] that the steady-state

probability of an arbitrary configuration C reads as

Pss(C) =
1

ZN

〈w|Dn1Em1Dn2Em2 · · · |v〉
〈w|v〉

, (9)

where the constant ZN assures the proper normalization, i.e.
∑

Ck

Pss(Ck) = 1

for k running over all possible configurations. In fact, such a probability can be calculated

directly using relations (6), (7), and (8), i.e. without knowing the specific representation of the

matrices D,E and vectors 〈w| and |v〉.Moreover, let the symbol

ωT (i) =
{
1, ith site is occupied

0, ith site is empty,

represent (for the fixed configuration T ) the binary functional ωT : {1, 2, . . . , N} 7→ {0, 1}.
Let the symbol

X = (n1,m1, ℓ1, n2,m2, ℓ2, . . . , nq ,mq, ℓq)

denote the set of all configurations such that n1 is the maximal number of occupied cells (i.e.

the (n1 + 1)st cell is empty), m1 is the maximal number of empty cells (starting from the

(n1 +1)st cell), when the (n1 +m1 +1)st cell is occupied, and ℓ1 is the number of cells (behind

the (n1 +m1)th cell) which can be arbitrarily occupied or not. Precisely speaking, the symbol

X corresponds to the set

{(ωT (1), ωT (2), . . . , ωT (N)) ∈ {0, 1}N : ωT (1) = ωT (2) = · · · = ωT (n1) = 1 ∧
ωT (n1 + 1) = ωT (n1 + 2) = · · · = ωT (n1 +m1) = 0 ∧
ωT (n1 +m1 + ℓ1 + 1) = ωT (n1 +m1 + ℓ1 + 2) = · · · = ωT (n1 +m1 + ℓ1 + n2)

= 1 ∧ ωT (n1 +m1 + ℓ1 + n2 + 1) = ωT (n1 +m1 + ℓ1 + n2 + 2) = · · ·
= ωT (n1 +m1 + ℓ1 + n2 +m2) = 0 ∧

ωT (n1 +m1 + ℓ1 + n2 +m2 + ℓ2 + 1) = · · · = ωT (n1 +m1 + ℓ1 + n2 +m2 + ℓ2 + n3)

= 1 ∧ · · ·}.

As follows from equation (9), the probability for finding the system in one of configurations

included inX is

Pss(X ) =
1

ZN

〈w|Dn1Em1(D + E)ℓ1Dn2Em2(D + E)ℓ2 · · · |v〉
〈w|v〉

. (10)

As a direct consequence of this assertion (or directly from equation (9)), we easily deduce that

the partition sum is of the form (see also [27])

ZN =
〈w|(D + E)N |v〉

〈w|v〉
.

5
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For completeness, we note that another way for obtaining this relationship is the generating

function approach (see [29]). Using lemma 4 and notation (A.2), we can assert that

ZN =
1

〈w|v〉

N∑

m=1

m(2N − m − 1)!
N !(N − m)!

m∑

i=0

〈w|EiDm−i |v〉 =
N∑

m=1

BN,m

m∑

i=0

1

αi

1

βm−i
.

Hence

ZN =





N∑

m=1

BN,m

β−m−1 − α−m−1

β−1 − α−1 α 6= β,

N∑

m=1

BN,m(m + 1)α−m α = β.

(11)

We conclude that by means of formulas (10) and (11), one can enumerate the probability

of an arbitrary steady-state configuration of the TASEP.

3. One-dimensional representation of an associated matrix algebra

As demonstrated above, the steady-state probability distribution of an arbitrary arrangement

of TASEP particles is derived from the matrix algebra (6)–(8). Such a quadratic algebra

is formulated for two matrices D and E which are associated with the particles and holes,

respectively. As proven in [27], the matrices fulfilling the rules (6)–(8) are non-commuting

and infinity dimensional, in general. However, for the special choice of the parameters α and

β, the matrices E andD can be commuting, i.e.DE = ED.Under this condition, equation (6)

leads to the equations

D + E = DE = ED,

1

β
|v〉 + E|v〉 = E|v〉

1

β

(12)

1

β
〈w|v〉 +

1

α
〈w|v〉 = 〈w|v〉

1

αβ

α + β = 1.

(13)

Thus, if condition (13) is guaranteed, the commuting matrices D and E are one dimensional,

i.e. they are represented in fact by the numbers E = α−1 and D = β−1. Consecutively, we

can choose 〈w| = |v〉 = 1. Above that, as the partition sum is now reduced to

ZN =
〈w|(D + E)N |v〉

〈w|v〉
=

(
1

αβ

)N

,

the steady-state probability (for the set of configurationsX ) reads as

Pss(X ) = (αβ)N
(
1

β

)6ni
(
1

α

)6mi
(
1

αβ

)6ℓi

= αN−6mi−6ℓi βN−6ni−6ℓi = α6ni (1− α)6mi .

4. Macroscopic characteristics in mean-field approximation

For the purpose of this paper, we briefly summarize the known results on the macroscopical

behavior of the TASEP model. We concentrate predominantly on the bulk density and flux in

mean-field approximation. Specifically, the average density of particles occurring inside the

6
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ith cell can be understood as the probability of finding the system in a certain configuration

chosen fromX̺i
= (0, 0, i − 1, 1, 0, N − i). That means

̺
(N)
i = Pss(X̺i

) =
〈w|(D + E)i−1D(D + E)N−i |v〉

〈w|(D + E)N |v〉
. (14)

Similarly, the flux through the ith site is defined as

J
(N)
i = Pss(XJi

) =
〈w|(D + E)i−1DE(D + E)N−i−1|v〉

〈w|(D + E)N |v〉
=

ZN−1

ZN

, (15)

whereXJi
= (0, 0, i − 1, 1, 1, N − i − 1). Using the large N approximations

ZN ≈





βα(1− 2α)

β − α

(
1

α(1− α)

)N+1

α <
1

2
∧ α < β,

βα(1− 2β)

α − β

(
1

β(1− β)

)N+1

β <
1

2
∧ β < α,

βα
√

π(α − β)

[
1

(2α − 1)2
−

1

(2β − 1)2

]
4N

N3/2
α >

1

2
∧ β >

1

2
,

α2
√

π(2α − 1)3
4N+1

N3/2
α = β >

1

2
,

(1− 2α)2

(1− α)2

N

αN (1− α)N
α = β <

1

2
,

2β
√

π(2β − 1)
4N

N1/2
α =

1

2
< β,

4N α = β =
1

2

(16)

derived in [27], we ascertain that (for an arbitrary cell being far from the boundaries of the

system) the relevant bulk density is given by

̺(α, β) =





1
2

α > 1
2

∧ β > 1
2
,

α α < 1
2

∧ β > α,

1− β β < 1
2

∧ β < α,

α α + β = 1.

(17)

Regarding the TASEP flux J, it is trivial to show that it is independent of i and

J (α, β) =





1
4

α > 1
2

∧ β > 1
2
,

α(1− α) α < 1
2

∧ β > α,

β(1− β) β < 1
2

∧ β < α,

αβ α + β = 1.

(18)

After comparing results (16) and (18), we close this section with the assertion that the

fundamental diagram of the TASEP model (see figure 4) is described by the equation

J (̺) = ̺(1− ̺). (19)

For completeness, we denote that the region of the parameters α, β delimited in

formulas (16)–(18) is used to be divided as follows:

• LD1: low-density region ♯1 (α < β < 1− α),

• LD2: low-density region ♯2 (2− 2β < 2α < 1),

• MC: maximal-current region (2α > 1 ∧ 2β > 1),

• HD1: high-density region ♯1 (β < α < 1− β),

• HD2: high-density region ♯2 (2− 2α < 2β < 1).

7



J. Phys. A: Math. Theor. 44 (2011) 175203 M Krbálek and P Hrabák
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Figure 4. The flow-density relation for the TASEP model. The curves display the function

J = J (̺) calculated for the ordered-sequential update of the ASEP model with open boundary

conditions (for the details on TASEP update-procedures, please see [17]). The parameter p

represents the rate for particle transition from the actual cell to the following one. The bold curve

displays the theoretical relation (19) valid for the time-continuous TASEP.

5. Distance clearance distribution—a special case

In the main part of this paper, we aim to derive an exact analytical formula for the so-called

distance clearance of the TASEP model, i.e. probability density for clear distance (measured

in cells) among the subsequent particles of the model. Such a probability density can (in

general) depend on the position i of a monitored particle. Hence, the relevant distribution

℘i(k) depends on i as well. The unnormalized probability of a (k − 1)cell-gap behind the ith

occupied cell is denoted as ℘̃i(k) = Pss(0, 0, i − 1, 1, k − 1, 0, 1, 0, N − i − k) and can be

calculated via

℘̃i
(N)(k) =

1

ZN

〈w|(D + E)i−1DEk−1D(D + E)N−i−k|v〉
〈w|v〉

(1 6 k 6 N − i), (20)

because the first i − 1 cells could be arbitrarily occupied or vacant, the ith cell should be

occupied, k−1 succeeding cells should be vacant as well, the (i+k)th cell should be occupied,

and finally the tail of the chain could be occupied/vacant at random. The probability density

for clearance is then

℘
(N)
i (k) = N ℘̃i

(N)(k),

where the constant N assures the proper normalization computable via the condition

N−i∑

k=1

℘
(N)
i (k) = 1. (21)

If the associatedmetric algebra is one dimensional, i.e. under condition (13), then equation (20)

changes to

℘
(N)
i (k) = N

(
1

α

)N−2 (
1

β

)N+1−k

(1 6 k 6 N − i). (22)

8
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The normalization pre-factor N can be quantified either from condition (21) or the equation

N
−1 =

〈w|(D + E)i−1D(D + E)N−i |v〉 − 〈w|(D + E)i−1DEN−i |v〉
〈w|v〉

,

which takes into account all possible configurations with the occupied ith cell and rejects those

configurations having the empty tail (behind the ith cell), when all the cells i + 1, i + 2, . . . , N

are vacant. This leads to

N
−1 =

(
1

α

)N−1 (
1

β

)N

(1− βN−i),

which yields (if (22) is applied) the desired result

℘
(N)
i (k) =

α

1− βN−i
βk−1.

The large N approximation adjusts such an expression to

℘i(k) = lim
N→+∞

℘
(N)
i (k) = αβk−1.

Note that this result is independent of the cell behind which the clearance is measured. As a

consequence, we obtain the formula

〈k〉 =
∞∑

k=1

k℘i(k) = α

∞∑

k=1

kβk−1 =
α

(1− β)2
=
1

α

for the mean clearance of the TASEP model. If reformulated, the clearance distribution reads

as

℘(k) = ̺(1− ̺)k−1,

where the relation ̺ = α is adopted. We remind that these outcomes are valid under the

condition α + β = 1 only.

6. Distance clearance distribution—a general case

To derive the exact formula of ℘
(N)
i (k) for an arbitrary choice of parameters α, β, we first

rearrange the matrix product in (20) into the form

(D + E)i−1DEk−1D(D + E)N−i−k =
∑

m,n

am,nE
mDn.

Then, applying rules (7) and (8), the following holds:

〈w|(D + E)i−1DEk−1D(D + E)N−i−k|v〉 =
∑

m,n

am,nα
−mβ−n.

Using notation (A.2), lemmas 4 and 5, we obtain (for k 6= N − i)

D(D + E)N−i−k =
N−i−k∑

m=1

BN−i−k,m

m∑

ℓ=0

DEℓDm−ℓ

=
N−i−k∑

m=1

BN−i−k,m

m∑

ℓ=0

(
Dm−ℓ+1 +

ℓ∑

z=1

EzDm−ℓ

)
.

9
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Furthermore, by means of lemma 5, we obtain

DEk−1D(D + E)N−i−k =
N−i−k∑

m=1

BN−i−k,m

m∑

ℓ=0

(
DEk−1Dm−ℓ+1 +

ℓ∑

z=1

DEz+k−1Dm−ℓ

)

=
N−i−k∑

m=1

BN−i−k,m

m∑

ℓ=0

(
Dm−ℓ+2+

k−1∑

w=1

EwDm−ℓ+1+ℓDm−ℓ+1+

ℓ∑

z=1

z+k−1∑

w=1

EwDm−ℓ

)
.

For i > 2 we apply lemma 4 to the product (D + E)i−1. That provides

(D + E)i−1DEk−1D(D + E)N−i−k =
i−1∑

p=1

p∑

q=0

N−i−k∑

m=1

m∑

ℓ=0

BN−i−k,mBi−1,p

(
EqDp−q+m−ℓ+2

+

k−1∑

w=1

Eq Dp−qEw

︸ ︷︷ ︸ Dm−ℓ+1 + ℓEqDp−q+m−ℓ+1 +

ℓ∑

z=1

z+k−1∑

w=1

Eq Dp−qEw

︸ ︷︷ ︸ Dm−ℓ

)
.

From lemma 6, we derive that (for q < p)

Dp−qEw =
w∑

a=1

(p − q − a + w − 1)!
(p − q − 1)!(w − a)!

Ea +

p−q∑

b=1

(p − q − b + w − 1)!
(p − q − b)!(w − 1)!

Db

=
w∑

a=1

A1E
a +

p−q∑

b=1

A2D
b,

where we use, for convenience, the notation

A1 =
(p − q − a + w − 1)!
(p − q − 1)!(w − a)!

, A2 =
(p − q − b + w − 1)!
(p − q − b)!(w − 1)!

.

This leads to the final formula

(D + E)i−1DEk−1D(D + E)N−i−k

=
i−1∑

p=1

N−i−k∑

m=1

m∑

ℓ=0

p−1∑

q=0

BN−i−k,mBi−1,p

(
EqDp−q+m−ℓ+2 + ℓEqDp−q+m−ℓ+1

+

k−1∑

w=1

w∑

a=1

A1E
q+aDm−ℓ+1 +

k−1∑

w=1

p−q∑

a=1

A2E
qDm−ℓ+1+b +

ℓ∑

z=1

z+k−1∑

w=1

w∑

a=1

A1E
q+aDm−ℓ

+

ℓ∑

z=1

z+k−1∑

w=1

p−q∑

b=1

A2E
qDm−ℓ+b

)
+

i−1∑

p=1

N−i−k∑

m=1

m∑

ℓ=0

BN−i−k,mBi−1,p

×

(
EpDm−ℓ+2 +

k−1∑

w=1

Ew+pDm−ℓ+1 + ℓEpDm−ℓ+1 +

ℓ∑

z=1

z+k−1∑

w=1

Ew+pDm−ℓ

)
.

Multiplying such an expression by the vectors 〈w| and |v〉 gives the following dependence on
the parameters α, β:

℘
(N)
i (k)=

N

ZN 〈w|v〉

i−1∑

p=1

N−i−k∑

m=1

m∑

ℓ=0

BN−i−k,mBi−1,p

(
1

β

)m−ℓ





(
1

β2
+

ℓ

β

) p−1∑

q=0

(
1

α

)q (
1

β

)p−q

+

p−1∑

q=0

(
1

α

)q k−1∑

w=1

1

β

(
w∑

a=1

A1

(
1

α

)a

+

p−q∑

b=1

A2

(
1

β

)b
)

10
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+

ℓ∑

z=1

p−1∑

q=0

(
1

α

)q z+k−1∑

w=1

(
w∑

a=1

A1

(
1

α

)a

+

p−q∑

b=1

A2

(
1

β

)b
)

+

(
1

α

)p
(
1

β2
+

ℓ

β
+

k−1∑

w=1

(
1

α

)w
1

β
+

ℓ∑

z=1

z+k−1∑

w=1

(
1

α

)w
)}

, (23)

where we consider i > 2 and k < N − i. The formulas for the remaining cases,

℘
(N)
1 (k)=

N

ZN 〈w|v〉

N−i−k∑

m=1

m∑

ℓ=0

BN−i−k,m

(
1

β

)m−ℓ
{
1

β2
+

ℓ

β
+

k−1∑

w=1

(
1

α

)w
1

β

+

ℓ∑

z=1

z+k−1∑

w=1

(
1

α

)w
}

,

℘
(N)
i (N − i) =

N

ZN 〈w|v〉

i−1∑

p=1

Bi−1,p





p∑

q=0

(
1

α

)q (
1

β

)p−q+1

+

N−i−1∑

w=1

(
1

α

)p+w

+

p−1∑

q=0

(
1

α

)q N−i−1∑

w=1

(
w∑

a=1

A1

(
1

α

)a

+

p−q∑

b=1

A2

(
1

β

)b
)


 ,

℘
(N)
1 (N − 1) =

(
1

β

)2
+

N−2∑

w=1

(
1

α

)w (
1

β

)
,

have been obtained analogically.

7. Mean-field versus boundary clearance distribution

Now we focus on the asymptotic clearance distribution ℘(k). As we are interested in the

probability of a gap of the length k between two succeeding particles in the bulk (i.e. far

from the boundaries) as well as near the boundaries, it is beneficial to fix the position of cells

i, i + 1, . . . , i + k. Based on this strategy, we denote the number of arbitrary occupied cells

before the gap as m := i − 1 and the number of arbitrary occupied cells behind the gap by

n := N − i − k. If investigating the probability of a gap in the bulk, the large N limit is meant

in the sensem, n → ∞ proportionally to the lattice size N. On the other hand, if investigating

the influence of the right boundary, the number n of particles behind the gap remains fixed

(mostly n = 0) and the large N limit is meant in the sense m → ∞.
Let us now investigate the behavior of the quantity ℘̃m,n(k) = ℘̃

(N)
m+1(k), where

N = m + n + k + 1. Thus, in terms of the matrix-product-ansatz description (MPA), we

focus on

℘̃m,n(k) =
1

Zm+n+k+1

〈w|(D + E)mDEk−1D(D + E)n|v〉
〈w|v〉

. (24)

Rearranging such a matrix product using (6) for k = 1, we obtain

(D + E)mDD(D + E)n = (D + E)mD(D + E)n+1 − (D + E)mDE(D + E)n

= (D + E)mD(D + E)n+1 − (D + E)m+n+1.

And hence, using relations (14) and (15), it holds that

℘̃m,n(1) = ̺
(n+m+2)
m+1 − J (n+m+2) . (25)

11
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For k = 2, we analogically obtain

(D + E)mDED(D + E)n = (D + E)m+1D(D + E)n,

and therefore

℘̃m,n(2) = ̺
(m+n+2)
m+2 J (m+n+3) . (26)

Moreover, for k > 3 it holds that

(D + E)mDEk−1D(D + E)n = (D + E)mDEk−2D(D + E)n + (D + E)m−1DEkD(D + E)n.

That leads to the formula

℘̃m−1,n(k + 1) = ℘̃m,n(k) − Jm+n+k+1℘̃m,n(k − 1). (27)

Let us now study such a system in the limit m → ∞. This corresponds with

the system on an infinite half-line with the right boundary open. We will now fix the

number n of arbitrary occupied cells behind the gap of length k and derive the formulas

for ℘̃n(k) := limm→∞ ℘̃m,n(k). Denoting

̺N−(n+a−b) := lim
m→∞

̺
(m+n+a)
m+b

(see also (14)) and using the asymptotic form of fundamental dependence (19),

equations (25)–(27) turn to

℘̃n(1) = ̺N−n−1 − ̺(1− ̺), ℘̃n(2) = ̺N−n̺(1− ̺), (28)

℘̃n(k + 1) = ℘̃n(k) − ̺(1− ̺)℘̃n(k − 1), (29)

where ̺ = ̺(α, β) is the bulk density. The general solution of the recursion equation (29) is

of the form

℘̃n(k) =





C1̺
k + C2(1− ̺)k ̺ 6=

1

2
,

C3

2k
+ k

C4

2k
̺ =

1

2
,

where C1, C2, C3, C4 are to be determined from the initial conditions (28).

In this paper, we are interested in two special cases: (1) n → ∞ (infinite line), (2) n = 0

(the leading particle sitting in the right boundary cell). In the first instance, let us investigate

the bulk behavior. Denoting

℘̃(k) := lim
n→∞

℘̃n(k) = lim
m,n→∞

℘̃m,n(k),

the initial conditions (28) turn to ℘̃(1) = ̺2, ℘̃(2) = ̺2(1 − ̺) and therefore (using the

recursion formula (29)) the general solution for n → ∞ reads

℘̃(k) = ̺2(1− ̺)k−1. (30)

The existence of the limit ℘̃(k) for all k ∈ N can be elementarily confirmed usingmathematical

induction by means of relations (25)–(27). The normalization constant N is then

N =

( ∞∑

k=1

̺2(1− ̺)k−1

)−1

=
1

̺

and hence the clearance distribution ℘(k) = N ℘̃(k) fulfills the relationship

℘(k) = ̺(1− ̺)k−1. (31)

12
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All the time we keep in mind that the bulk density ̺ is a function of the parameters α, β given

by (17). Thus, the dependence of the clearance distribution (in the bulk) on these parameters

reads

℘(k;α, β) =





1
2k α > 1

2
∧ β > 1

2
,

α(1− α)k−1 α < 1
2

∧ β > α,

(1− β)βk−1 β < 1
2

∧ β < α,

αβk−1 α + β = 1.

The relevant evaluation of this outcome is visualized in figures 7–11. These figures show

the clearance distribution ℘
(N)
i (k) calculated via the exact formula (23) and the large N

approximation ℘(k) calculated via (31). They are organized as follows. Plots 7, 8, 9, 10,

and 11 correspond to the phases LD1 (low-density regime ♯1), LD2 (low-density regime ♯2),

MC (maximal-current regime), HD1 (high-density regime ♯1), and HD2 (high-density regime

♯2), respectively. The individual subplots demonstrate the influences of the lattice length,

i.e. they show the way how the distribution ℘
(N)
i (k) converges to the asymptotic curve (31).

Also, discrepancies between (23) and (31) may be explained using the corresponding density

profiles ̺
(N)
i figured under these subplots.

Now we concentrate on the netto-gap distribution near the right-hand tail of the lattice,

i.e. we consider n = 0. In this case, the initial conditions will be derived from formula (14).

It is easy to verify that

̺N−0 =
̺(1− ̺)

β
and ̺N−1 =

̺2(1− ̺)2

β2
+ ̺(1− ̺).

Hence, the initial conditions have the form

℘̃0(1) =
̺2(1− ̺)2

β2
and ℘̃0(2) =

̺2(1− ̺)2

β
.

The particular solution then reads

℘̃0(k;α, β) =





1

β22k+2

(
1−

k

2
+ β(k − 1)

)
α >

1

2
∧ β >

1

2
,

α2(1− α)k+1

β2

(
β − α

1− 2α

)
+

αk+1(1− α)2

β2

(
1−

β − α

1− 2α

)
α <

1

2
∧ β > α,

(1− β)2βk−1 β <
1

2
∧ β < α,

α2βk−1 α + β = 1.

(32)

After normalization N =
(∑

k∈N
℘̃0(k)

)−1 = ̺−1
N−0 = β

̺(1−̺)
, the probability density for gap

k between particles being close to the right boundary is

℘0(k;α, β) =





1

β2k

(
1−

k

2
+ β(k − 1)

)
α > 1

2
∧ β >

1

2
,

α(1− α)k

β

(
β − α

1− 2α

)
+

αk(1− α)

β

(
1−

β − α

1− 2α

)
α <

1

2
∧ β > α,

(1− β)βk−1 β <
1

2
∧ β < α,

αβk−1 α + β = 1.

(33)

13
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Figure 5. Spectral rigidity of vehicular traffic. The gray curves correspond to the rigidity 1(L)

analyzed separately in 85 density regions. The chosen results of relevant statistical analysis are

picked out. Specifically, the plus signs, squares, triangles, stars, circles, and diamonds represent

the rigidities obtained for traffic data from the following density regions: [2,3), [6,7), [16,17),

[26,27), [40,41), and [85,86) vehicles/km/lane, respectively. For details, please see [25].

Bymeans of computer simulations, one can see that the asymptotic values (33) are in very

good agreement with numerical implementation of the model even for small-sized lattices. In

figure 12, we can see the comparison of simulation results for N = 20 (bullets and plus signs)

with the analytical values (33) (dashed and dash-dotted lines) together with the bulk prediction

℘(k) = ̺(1− ̺)k−1 (bold continuous line).

8. Mean-field spectral rigidity of the TASEP model

Description of traffic microstructure by means of the inter-vehicle gap distribution ℘(r)

is, as discussed above, usual in traffic theory. However, clearance distribution depicts the

distance gaps between two successive vehicles only. Aiming to investigate the middle-ranged

interactions among the cars, it is necessary to find a mathematical quantity suitable for

quantifying the level of synchronization for larger clusters of particles. This desired quantity

can be found in random matrix theory (see [30]) where it provides an insight into the structure

of the eigenvalues of random matrix ensembles. It is called a spectral rigidity. If reformulated

within the bounds of traffic theory, the spectral rigidity has the following interpretation.

Consider a set {ri : i = 1 . . . Q} of netto gaps between each pair of the succeeding cars
moving on a one-lane freeway. We suppose that the mean gap taken over the complete set is

re-scaled to 1, i.e.

Q∑

i=1

ri = Q. (34)

14
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Dividing the interval [0,Q) into subintervals
[
(k − 1)L, kL

)
of length L and denoting by

nk(L) the number of cars in the kth subinterval, the average value n(L) taken over all possible

subintervals is

n(L) =
1

⌊Q/L⌋

⌊Q/L⌋∑

k=1

nk(L) = L,

where the integer part ⌊Q/L⌋ stands for the number of all subintervals
[
(k − 1)L, kL

)

included in the entire interval [0,Q). We suppose, for convenience, that Q/L is integer, i.e.

⌊Q/L⌋ = Q/L. The spectral rigidity 1(L) is then defined as

1(L) =
L

Q

Q/L∑

k=1

(
nk(L) − L

)2

and represents the statistical variance of the number of vehicles moving at the same time inside

a fixed part of the road of length L. For the one-parametric family of distributions (1), it was

proved in [25] that the associated spectral rigidity has a form

1(L) = χL + γ +O(L−1), (35)

where (together with relation (2))

χ = χ(ν) =
2 +

√
Bν

2B(1 +
√

Bν)
(36)

and

γ = γ (ν) =
6
√

Bν + Bν
(
21 + 4Bν + 16

√
Bν

)

24
(
1 +

√
Bν

)4 . (37)

We recall that the parameter ν reflects the inverse temperature of the traffic gas and the constant

B = B(ν) is derived from relation (2). Equation (35) prognosticates that the rigidity is a linear

function whose slope χ is depending on the mental strain coefficient ν (briefly described

in section 1). Approximately, the changes of χ (with respect to the traffic density) can be

described as follows. For small densities, the slope χ in the relation 1(L) ≈ χL + γ is

close to 1 as expected for statistically independent events. Nevertheless, if the traffic density

increases, the interactions among vehicles strengthen, which results in a descent of the slope

χ. The more detailed insight into the realistic behavior of 1(L) is demonstrated in figure 5,

where the experimental results of ‘traffic spectral analysis’ are plotted.

At the moment, our immediate goal is to derive the analytical formula for the spectral

rigidity 1 of the totally asymmetric simple exclusion model. Firstly, note that the mean

clearance calculated for distribution (31) is

〈k〉 =
∞∑

k=1

k̺(1− ̺)k−1 =
1

̺
,

which means that at the end of our computations there will be necessity to revise the results

in accord with the general definition (34). Now, denote by nℓ(s) the probability that there is

exactly s particles inside the fixed ℓ-cells region of the TASEP chain. As understandable, such

a probability reads

nℓ(s) =
(

ℓ

s

)
̺s(1− ̺)ℓ−s (s = 0, 1, . . . , ℓ).

Since

〈s〉 =
ℓ∑

s=0

ℓ!

(ℓ − s)!(s − 1)!
̺s(1− ̺)ℓ−s = ̺ℓ

15
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Figure 6. Spectral rigidity of the TASEP model. The signs represent the numerically-obtained

spectral rigidity 1(L) for the TASEP with parameters α, β indicated in the legend. The curves

display the corresponding rigidity calculated via the exactly-derived formula (38).

and

〈s2〉 =
ℓ∑

s=0

sℓ!

(ℓ − s)!(s − 1)!
̺s(1− ̺)ℓ−s = ̺ℓ

(
1 + ̺(ℓ − 1)

)
,

the corresponding statistical variance is of a form

σ 2 = 〈s2〉 − 〈s〉2 = ̺ℓ(1− ̺),

which leads (after the transition to the re-scaled headways L = ̺ℓ) to the final formula for the

spectral rigidity

1(L) = (1− ̺)L. (38)

Obviously, the slope χ = 1−̺ of the rigidity1(L) decreases linearly with increasing density

of the TASEP particles, as confirmed by the numerous numerical tests visualized in figure 6.

This result is very similar to the behavior revealed in realistic traffic samples.

9. Summary and conclusions

Using the MPA formalism, we have derived the general analytical formula (23) for distance

clearances among the subsequent particles of the TASEP model with open boundaries. Such

an exact formula has been substantially simplified for the middle segment of sufficiently long

TASEP chains (see (31)). The general formula (23) as well as the bulk simplification (31)

have been consecutively compared to the numerical representation of the TASEP model.

The discrepancies between these relationships have been detected for small-sized systems

only, where the boundary effects strongly influence the movements of all internal particles.

However, the generality of formula (23) for clearances measured in an arbitrary part of the

lattice has been confirmed also for the boundary tail of the system. Here we have compared

numerical results with the analytical formula (23) and found excellent agreement, affirming

the correctness of the presented results. In contrast, if the boundary clearances are compared

to the bulk prediction (31), we detect substantial incompatibility. This can be explained by the

16
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Figure 7. Clearance distribution in the phase of low density ♯1. We plot the inter-particle distance

distribution calculated for the TASEPwith α = 0.1 and β = 0.2.The bullets visualize the clearance

distribution ℘
(N)
i (k) enumerated via the exact formula (23), while continuous curves visualize the

large N approximations ℘(k) summarized by relation (31). Above that, we also plot the relevant

densities, which synoptically illustrates the reasons for discrepancies between (23) and (31).
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Figure 8. Clearance distribution in the phase of low density ♯2. We plot the inter-particle distance

distribution calculated for the TASEP with α = 0.3 and β = 0.9.

fact that the boundary conditions for particle movements are completely different from those

stated for the inside of the system.

If the TASEP clearances are compared to the empirically-obtained clearance distributions

of vehicular streams, one can see two different situations. Comparing the TASEP and
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0

0.1

0.2

0.3

0.4

0.5

0.6

N=10

i=4

p
(k

) 
a
n
d
 p

(N
)

i
(k

)

5 6 7 8 9 10
0

0.5

1

ρ
i(N

)

0

0.1

0.2

0.3

0.4

0.5

0.6

N=30

i=15

16 20 24 28
0

0.5

1

Tail of TASEP−chain behind i−th Cell

0

0.1

0.2

0.3

0.4

0.5

0.6

N=100

i=75

76 81 86 91 96
0

0.5

1

Figure 9. Clearance distribution in the phase of maximum current. We plot the inter-particle

distance distribution calculated for the TASEP with α = 0.8 and β = 0.9.
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Figure 10. Clearance distribution in the phase of high density ♯1. We plot the inter-particle

distance distribution calculated for the TASEP with α = 0.9 and β = 0.3.

real-road traffic for small densities of elements, we uncover the comparatively similar

behavior. Specifically, if the relevant clearances are re-scaled to mean clearance equal to

1, both systems show the same asymptotic clearance distribution ℘(r) = 2(r)e−r . Such a

behavior is exceptable because of weak interactions in the systems mentioned. Completely

different situations can be detected for high densities. Whereas the TASEP clearances are still

exponentially-distributed (which can be simply substantiated by the knowledge that on the
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Figure 11. Clearance distribution in the phase of high density ♯2. We plot the inter-particle

distance distribution calculated for the TASEP with α = 0.2 and β = 0.1.
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Figure 12. Clearance distribution near the right boundary. The inter-particle distribution (33) is

plotted for N = 20 particles in three phases LD, HD, and MC together with the corresponding

density profiles. In the left graph (LD), we may compare the values (32) (dashed line for β1
and dash-and-dotted line for β2) with simulation results (plus signs for β1 and bullets for β2) and

asymptotic curve (31) (continuous curve). The outputs of numerical simulations for the HD regime

(middle subplot) are visualized by the plus signs (for α1) and bullets (for α2). In this case, the

corresponding curves (32) coincide with the bulk prediction (31) (continuous curve). The plot for

the maximum-current phase (right) is structured analogically.

infinite lattice the Bernoulli measure is stationary), the high-density traffic distributions ℘(r)

show marked descent for occurrences of small gaps, i.e. limr→0+ ℘(r) = 0. The reason for
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such a discrepancy is hidden predominantly in the fact that car correlations in the vehicular

traffic are middle-ranged, which means that in relatively dense traffic the cars interact in more

extensive clusters. Here the phase of traffic congestion leads to strong car repulsion, which

results in small probability for two vehicles being close to each other (with respect to the mean

distance between two successive cars). Similar effects cannot be detected among TASEP

particles since the TASEP repulsion is strictly hard-cored.

On the other hand, if the spectral rigidities 1(L) are compared, both systems generate

very similar dependence on the length L of the road. This unexpected similarity is probably a

consequence of the different nature of systems analyzed. Anyway, whereas vehicular traffic is

a space-continuous system, the TASEP model is cellular system whose elements can occur in

the prescribed positions only. This discrete nature brings certain additional interactions into

the system observed, which subsequently projects onto the rigidity analysis.

To conclude, although in some aspects the TASEP model and real-road vehicular traffic

show similar signs in relevant microstructure, the cellular model TASEP seems to be suitable

for macroscopical traffic simulations only. This well-known result is now confirmed by

detailed analysis of TASEP microstructure. However, that analysis itself is very contributive

because it reveals the detailed changes of particle distributions inside the lattice as well as near

the boundaries. Up to the present time, no similar investigation has been realized.
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Appendix

Lemma 1. Let m, n, a be the arbitrary natural numbers. Let a 6 m. Then

m∑

i=a

(
n − i +m − 1

n − 1

)
=

(
n +m − a

n

)
. (A.1)

Proof. We will proceed using the mathematical induction. Let m = a = 1. Then for an

arbitrary n ∈ N,

1∑

i=1

(
n − i

n − 1

)
=

(
n − 1
n − 1

)
=

(
n

n

)
.

Now let relation (A.1) hold for all a 6 m. Then for a < m + 1,

m+1∑

i=a

(
n − i +m

n − 1

)
=

m∑

i=a

(
n − i +m − 1

n − 1

)
+

(
n − a +m

n − 1

)
=

(
n +m − a

n

)
+

(
n − a +m

n − 1

)

=
(

n − a +m + 1

n

)
.

The case a = m + 1 can be proven analogically to the case m = 1, a = 1. ¤
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Lemma 2. If using the notation

Bn,p =





p(2n − p − 1)!
n!(n − p)!

0 < p 6 n,

0 otherwise,

(A.2)

it can simply be verified that for n > 0 and p > 0,

Bn,p = Bn+1,p+1 − Bn+1,p+2.

Lemma 3. For the arbitrary square matrices D,E fulfilling DE = D + E and for n > 0,

Dn(D + E) = Dn+1 +Dn−1(D + E) =
n+1∑

q=1

Dq + E.

Lemma 4. Assume D,E to be arbitrary square matrices fulfilling the relation DE = D +E.

Let n be the natural number. Then

(D + E)n =
n∑

m=1

Bn,m

m∑

q=0

EqDm−q . (A.3)

Proof. Again, we will use the mathematical induction with respect to n. Let us assume

that (A.3) holds. Then with the help of lemmas 2 and 3, we elementarily deduce that

(D + E)n+1 =
n∑

m=1

Bn,m

m∑

q=0

EqDm−q(D + E) =
n∑

m=1

Bn+1,m+1

m∑

q=0


Eq+1 + Eq

m−q+1∑

p=1

Dq




−
n∑

m=1

Bn+1,m+2

m∑

q=0


Eq+1 + Eq

m−q+1∑

p=1

Dq




= Bn+2,2(D + E)2 +

n+1∑

m=3

Bn+1,m

m∑

q=0

EqDm−q =
n+1∑

m=1

Bn+1,m

m∑

q=0

EqDm−q .
¤

Lemma 5. Assume D,E to be arbitrary square matrices fulfilling the relation DE = D +E.

Let n ∈ N. Then

DEn = DEn−1 + En = D +

n∑

w=1

Ew. (A.4)

Lemma 6. Assume D,E to be arbitrary square matrices fulfilling the relation DE = D +E.

Let m, n be the natural numbers. Then

DnEm =
m∑

i=1

(
n − i +m − 1

n − 1

)
Ei +

n∑

j=1

(
n − j +m − 1

m − 1

)
Dj . (A.5)

Proof. We will use the mathematical induction. For n = 1 and an arbitrary m ∈ N,

expression (A.5) reduces to expression (A.4). Let us now assume that (A.5) holds true for
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some n ∈ N. By means of lemmas 1 and 5, we obtain

D(DnEm) =
m∑

i=1

(
n − i +m − 1

n − 1

)[
D +

i∑

w=1

Ew

]
+

n∑

j=1

(
n − j +m − 1

m − 1

)
Dj+1

=
n+1∑

j=1

(
n − j +m

m − 1

)
Dj +

m∑

w=1

Ew

m∑

i=w

(
n − i +m − 1

n − 1

)
=

m∑

i=1

(
n − i +m

n

)
Ei

+

n+1∑

j=1

(
n − j +m

m − 1

)
Dj . ¤
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