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Abstract

Many-particle simulations of vehicle interactions have been quite successful in the qualita-
tive reproduction of observed tra c patterns. However, the assumed interactions could not be
measured, as human interactions are hard to quantify compared to interactions in physical and
chemical systems. We show that progress can be made by generalizing a method from equilib-
rium statistical physics we learned from random matrix theory. It allows one to determine the
interaction potential via distributions of the netto distances s of vehicles. Assuming power-law
interactions, we 2nd that driver behavior can be approximated by a forwardly directed 1=s po-
tential in congested tra c, while interactions in free tra c are characterized by an exponent of
� ≈ 4. This is relevant for tra c simulations and the assessment of telematic systems.
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In recent years, statistical physics and nonlinear dynamics have been very successful
in modeling, simulating, and understanding empirically observed instability and pattern
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formation phenomena in freeway tra c [1–6]. On the one hand, vehicle tra c Gow
can be well approximated as a particular one-dimensional particle gas with Boltzmann
statistics [6,2]. On the other hand, the motion of a vehicle i of mass m and length li
at location ri(t) with speed vi(t)=dri=dt, maximum velocity v0, adaptation time �, and
Guctuation force �i(t) can be reGected by an acceleration equation of the form

m
dvi
dt
= m

v0 − vi
�

+ f(si) + �i(t) ; (1)

where f(si) is a negative and repulsive force, which depends on the netto distance
(clearance) si = (ri+1 − ri − li) between two successive vehicles. With Wi(s) = v0 +
�f(s)=m, Eq. (1) corresponds to the optimal velocity model dvi=dt = [Wi(si) − vi]=�
[7] with an additional noise term �i. Due to the lack of good single-vehicle data
and suitable evaluation methods, the form of interaction potential U (s) with f(s) =
−dU (s)=dr = −dU (s)=ds has been subject to speculation. A direct evaluation by av-
eraging vi-over-si data suJers from the wide distribution of netto distances and causes
problems of interpretation [2,8]. Exploiting the source of this problem, we suggest
a statistical approach to determine the potential and present 2rst results regarding its
form, based on a comparison of single-vehicle data with the netto distance distributions
obtained from rigorous solutions for a particle gas in equilibrium. For a justi2cation
of this approach see Ref. [9].
Normally, the interaction forces or potentials between particles governing each other’s

motion, are not directly measurable. The great success of scattering theory was to de-
termine interaction potentials from statistical distributions of particles scattered at some
“target” composed of the material under investigation [10]. Learning about human in-
teractions requires a somewhat diJerent approach from statistical physics, which can
be learned from books on random matrix theory [11]. This method was successfully
applied to the statistical description of the time gaps Ti between the arrival times of
buses in some Mexican cities [12], where the potential U was found to be a logarith-
mic function, i.e., U (Ti) = −ln(Ti). It was speculated that the same potential would
approximate the (time) headway distribution of highway tra c [13]. In contrast, our
study will identify the shape of the spatial interaction potential and reveal a diJerent
driver’s behavior in free and congested tra c.
For this, recently extended a method developed for classical many-particle systems

exposed to a “thermal bath” of a given temperature, i.e., to random forces of a certain
variance and statistics [9]. The resulting velocity and netto distance distributions [see
Eqs. (6) and (7)] allow one to draw conclusions about the interaction potential U , as
this determines their shapes. These distributions have been originally derived assuming
a conservation of momentum and energy, i.e., a transformation of potential energy
into kinetic energy. However, by investigating a Fokker–Planck equation equivalent
to Eq. (1), one can show that the same distributions are steady-state solutions for
driven many-particle systems with forwardly directed rather than symmetrical potentials
[9], if the system is large enough and if the average velocity V and variance � are
constant. For dV=dt ≈ 0, d�=dt ≈ 0, and N�1, Guctuations in the system become
negligible, and the total energy is only slightly Guctuating. The eJects of the driving
force mv0=� and the dissipative force −mvi=� balance each other in a statistical sense [9].
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However, dV=dt ≈ 0 requires linear stability of system (1) of coupled diJerential
equations, i.e., dW (s)=ds¡ 1=(2�) [7]. Therefore, we have to exclude the stop-and-go
regime between 20 and 40 vehicles per kilometer (veh./km) and lane from our in-
vestigation [2]. In summary, the data analysis must be carried out for ensembles of
vehicles in a stationary tra c state with a well-de2ned velocity variance (generalized
“temperature”) Var(vi) = (�V )2 in a reference frame moving with a constant velocity,
the average-vehicle velocity V . That is, one has to restrict to small density intervals,
otherwise one will mix up systems of diJerent generalized temperatures and diJer-
ent average velocities. Such a careful analysis is presented here for the 2rst time for
single-vehicle data of the Dutch two-lane freeway A9, which was con2rmed by another
analysis for Czech highway data (not shown). This has led to new and surprising in-
sights regarding the shape of the interaction potential and its dependence on the tra c
state. We will focus on forwardly directed power-law potentials

U (s)˙

{
s−� for s¿ 0 ;

0 otherwise ;
(2)

where �¿ 0 is a 2t parameter and s the netto distance (clearance) between two succes-
sive cars on a (ring) road of length L. Similar relations have been suggested in some
car-following models [14,15] and describe the repulsive tendency of drivers to keep a
safe distance to the respective car ahead. The exponent determines the characteristic
dynamic and stationary behavior.
Short-ranged Dyson’s gas with power-law potential: We will now investigate the

statistical gas of N point-like identical particles on a ring of scaled length N interacting
via the potential energy

U(x1; : : : ; xN ) = C
N∑
i=1

U (xi+1 − xi) : (3)

Herein, (x1; : : : ; xN ) is the vector of scaled particle positions xi = (ri −
∑i−1

j=1 lj)N=L=

�(ri −
∑i−1

j=1 lj), where � denotes the global vehicle density. For convenience, we will
use a periodic index, i.e., xi+N = xi + N . Let this so-called short-ranged power-law
Dyson’s gas (SRDG) be exposed to a temperature reservoir with Boltzmann statis-
tics and generalized temperature �2¿ 0. The corresponding dimensionless Hamiltonian
reads

H=
1
2

N∑
i=1

(ui − 〈u〉)2 + C
mV 2

N∑
i=1

U (xi+1 − xi) (4)

with the additional condition
∑N

i=1 |xi+1 − xi| = N , where ui = vi〈u〉=V is the scaled
velocity of the ith particle and 〈u〉 = 1 the scaled average velocity. Note that all the
quantities used here are dimensionless. The probability of 2nding the system in the
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phase-space element � ≡ (x1; : : : ; xN ; u1; : : : ; uN ) is

P∗(�) =Ne−H=(2�2) =N

N∏
i=1

e−(ui−〈u〉)2=(2�2)

×
N∏
i=1

e− U (xi+1−xi)!

(
N −

N∑
i=1

|xi+1 − xi|
)

; (5)

where  = C=(m�2V 2) represents the scaled generalized inverse temperature and N
the normalization factor, which can be determined from the normalization condition∫
R2N P∗(�) d�=1. By integration over the 2N−1 independent variables, the probability
of 2nding the ith particle with velocity ui is obtained as

P′(ui) =
1√
2"�

exp
[
− (ui − 〈u〉)2

2�2

]
: (6)

That is, the velocities are Gaussian-distributed with mean value 〈u〉 ≡ ∫R uP′(u) du=1
and variance 〈(u− 〈u〉)2〉 ≡ ∫R(u− 〈u〉)2P′(u) du= �2 = 〈(v− V )2〉=V 2.
For the above SRDG, one can also determine the equilibrium distribution of scaled

particle distances zi=(xi+1− xi)=�si [16], which gives us the expression for the netto
distance (or clearance) distributions:

P(�) (z) = A e− z−�
e−Bz : (7)

Herein, A = A(�;  ) and B = B(�;  ) are constants determined via the normalization
conditions∫ ∞

0
P(�) (z) dz = 1; 〈z〉 ≡

∫ ∞

0
zP(�) (z) dz = 1 : (8)

These equations can be analytically solved only for particular potentials, including
power-law relations. In the following, we need two special variants of the SRDG. In
the case � = 1, we 2nd

∫∞
0 P(1) (z) dz = 2A(

√
 =B)K1(2

√
 B) and

∫∞
0 zP(1) (z) dz =

2A( =B)K2(2
√
 B), where K& is the Mac-Donald’s function (modi2ed Bessel’s func-

tion of the second kind) of order &∈R. Based on these equations, one can exactly
determine the normalization constants A and B. For the case � = 4, the numerically
determined values of the normalization constants A and B are displayed in Table 1. For
 ¿ 2, we could 2nd the approximate relations A ≈ exp(� − 0:1490�2 + 1:3689 � +
0:2271) and B ≈ � + 0:4593�+ 0:9481.
Data analysis: We have separately analyzed eight small density intervals in the free

low-density regime ≤ 20 veh./km and eight density intervals in the congested tra c
regime ≥ 40 veh./km. After determination of the respective values of  and � from the
single-vehicle data, we have obtained the 2t parameter � by a least-square method, i.e.,
minimization of the error function '2 measuring the deviation between the theoretical
and empirical clearance distributions. The predicted Gaussian distributions reproduce
the empirical velocity distributions very well (see Table 2 and Fig. 1), which is also
supported by other empirical and numerical studies [6]. The best 2t of the netto distance
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Table 1
Numerically determined values of the normalization constants A and B for � = 4

 A B

0 1 1
0.00001 1.158 1.0761
0.00005 1.246 1.1123
0.0001 1.3036 1.136
0.0005 1.5122 1.2151
0.001 1.6558 1.2644
0.005 2.2673 1.4405
0.01 2.783 1.5593
0.05 6.1623 2.0447
0.1 11.1941 2.4296

The values depend on  , and therefore, also on the density � (see Table 2).

Table 2
Empirical values of the scaled velocity variation � and the scaled generalized inverse temperature  for 16
density intervals obtained from single-vehicle data of the Dutch two-lane freeway A9, neglecting clearances
in front of long vehicles with li ¿ 7 m

� (veh./km) � (10−1)  (10−5)

[0; 2:5) 1.095 ≈ 0
[2:5; 5) 0.967 ≈ 0
[5; 7:5) 0.989 3.998
[7:5; 10) 1.076 7.331
[10; 12:5) 1.038 11.86
[12:5; 15) 0.960 16.36
[15; 17:5) 0.946 152.9
[17:5; 20] 0.902 442.4

[40; 45) 3.967 634.8
[45; 50) 3.731 711.8
[50; 55) 3.329 915.9
[55; 60) 3.300 1046
[60; 65) 2.996 1186
[65; 70) 2.895 1323
[70; 75) 2.647 1358
[75; 80] 2.735 1279

distributions is obtained for the integer parameter �= 1 in congested tra c, which is,
for example, compatible with the intelligent driver model (IDM) and perception-based
models [15]. Throughout the free tra c regime, we 2nd a good agreement with �=4,
corresponding to weak interactions (see Figs. 2 and 3). This is not only a strong
support of studies questioning a uniform behavior of drivers in all tra c regimes [3,8].
It also oJers an interpretation of the mysterious fractional distance-scaling exponent
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Fig. 1. Scaled velocity distributions for eight density regimes in free tra c (above) and eight density intervals
in congested tra c (below). The bar diagrams correspond to the scaled empirical velocity distributions, while
the solid curves correspond to the theoretically predicted Gaussian distributions. Note that the mean speeds
are always scaled to one, while the variances are given by the scaled empirical values �2 (see Table 2).

� + 1 ≈ 2:8 in classical follow-the-leader models [14], which interpolate between the
driver behavior in the free and congested regimes.
In summary, we have found that it is successful to generalize thermal-equilibrium

properties of a short-ranged power-law Dyson’s gas exposed to a heat reservoir with
the scaled generalized inverse temperature  to steady-state vehicle tra c, where  is
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Fig. 2. Sum of squared deviations between the empirical and the theoretical netto distance distributions for
various 2t parameters �. The best 2t is � = 4 throughout the free tra c regime (left) and � = 1 throughout
the congested regime (right).

an increasing function of the tra c density �: In the regime of congested tra c, this
dependency is simply linear:  (�)=0:0261�− 0:4785. The presented results show that
the shape of the interaction potential of vehicles can be approximated by formula (2)
with �=4 for free tra c and 1 for congested tra c. The theoretical predictions are fur-
ther supported by the Gaussian distribution of the vehicle velocities in all investigated
density regimes.
As it is a hard task to derive analytical relations for the clearance distribution (includ-

ing its normalization constants A and B), we could demonstrate the determination of
vehicle interaction potentials only for simple functional relations. Future advances with
this method will hopefully allow to determine velocity-dependent interaction forces or
functions with turning points, which are desirable to reproduce the dynamical behavior
in the unstable tra c regime realistically as well [17]. Determining interaction poten-
tials in freeway tra c does not only contribute to the challenging problem of how
to 2t time headway or distance distributions of vehicles [18,2,8]. It also advances the
quantitative understanding of human behavior. Normally, it is di cult to identify and
measure the relevant behavioral variables, and realistic models contain a large num-
ber of parameters. Here, progress has been made by powerful methods from statistical
physics. Nevertheless, the resulting interaction model is not just a physical model. The
new picture of two diJerent regimes with �=1 and 4 points to adaptive driver’s behav-
ior to congested and free tra c conditions. The speci2cation of the interaction potential
is essential for realistic tra c simulations, which are required for the design of e cient
and reliable tra c optimization measures such as intelligent on-ramp controls, driver
assistance systems, lane-changing assistants, etc.
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Fig. 3. Distributions of scaled netto distances (clearances) z = �s for eight density intervals in free tra c
(above) and eight density regimes in congested tra c (below). The bar diagrams represent the scaled em-
pirical distributions, while the solid curves correspond to the normalized theoretical distributions with the
empirically determined values  listed in Table 2 and parameter � = 4 for free tra c, but 1 for congested
tra c.
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