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• We present new approaches for estimating the number of cars influencing a decision-making procedure of drivers.
• Empirical data samples are subjected to advanced methods of statistical analysis.
• Consistency between the estimations used is surprisingly credible.
• We demonstrate that universally-accepted premise on short-ranged traffic interactions is not substantiated.
• All methods introduced have revealed that minimum number of actively-followed vehicles is two.
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a b s t r a c t

We present three different approaches how to estimate the number of preceding cars
influencing a decision-making procedure of a given drivermoving in saturated traffic flows.
The first method is based on correlation analysis, the second one evaluates (quantitatively)
deviations from the main assumption in the convolution theorem for probability, and
the third one operates with advanced instruments of the theory of counting processes
(statistical rigidity).

We demonstrate that universally-accepted premise on short-ranged traffic interactions
may not be correct. All methods introduced have revealed that minimum number of
actively-followed vehicles is two. It supports an actual idea that vehicular interactions are,
in fact, middle-ranged. Furthermore, consistency between the estimations used is surpris-
ingly credible. In all caseswe have found that the interaction range (the number of actively-
followed vehicles) dropswith traffic density.Whereas driversmoving in congested regimes
with lower density (around 30 vehicles per kilometer) react on four or five neighbors,
drivers moving in high-density flows respond to two predecessors only.

© 2017 Elsevier B.V. All rights reserved.

1. Motivation

Nowadays, a deeper understanding of the principles of vehicular dynamics is becoming increasingly important because
of many reasons. It is essential that numerical/theoretical models are capable to reproduce a traffic reality more and more
authentically since elaborated simulators can thenmore-responsibly predict impending traffic congestions, manage control
systems in autonomous vehicles, or help with planning of inter-vehicular communication networks. For these reasons we
now ask fundamental questions on a nature/intensity/range of inter-vehicle interactions.
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From a general viewpoint, any traffic system is an agent ensemble whose intelligent agents interact with a certain
set of their neighbors. Although forces of such a kind are not directly measurable some recent works (see [1–9]) have
revealed a way how to optimize a force-description to obtain a more realistic predictions of vehicular microstructure.
In [2–5] authors have demonstrated that one-dimensional thermal gas, whose particles interact via a repulsion potential
depending on reciprocal value of distance among succeeding cars, represents a suitable theoretical model that reproduces a
microscopic structure of freeway traffic surprisingly good. However, this stochastic thermodynamic model as well as all the
best-known microscopic traffic-models (follow-the-leader models, car-following models, intelligent driver model, optimal
velocity model, Nagel–Schreckenberg model –see [10–12]) are based on the reductive premise that an ‘‘explicit force’’ exists
between neighboring vehicles only. Such a property used to be referred to as a short-ranged interaction. To what extent
does this premise correspond with traffic reality? Do there exist interactions among more neighbors as well? Is there any
theoretically-substantiatedmethodology for estimating the numberm of actively-followed vehicles (the so-called interaction
range)? These are the issues that we will try to discuss in this paper.

Intuitively, one can expect (in contrast to basic principles ofmicroscopic trafficmodeling) that decision-makingprocedure
of a driver (moving in congested traffic-regimes) is typically influenced by more circumjacent cars. This is referred to
as a middle-ranged case. To conclude, the main objective of this paper is to estimate the interaction range in empirical
traffic samples by means of several proven/innovative mathematical approaches. Furthermore, we plan to analyze how the
interaction range evolves with changing values of basic macroscopic quantities like traffic flow or density.

2. Empirical data-sets and the segmentation procedure

Vehicle-by-vehicle data analyzed in this paper has been provided by the Road and Motorway Directorate of the Czech
Republic (ŘSD ČR) and recorded at the Expressway R1 (also called the Prague Ring) in Prague, the Czech Republic. For
intentions of this research we have used detectors located sufficiently far from any on/off-ramps where traffic flow is dense
enough to generate congested traffic states. Here one can guarantee the conservation of the number of vehicles as well as
a significant synchronization among moving vehicles. Only intensive inter-vehicular cooperation can hypothetically lead to
a detection of an interaction range. Therefore, we have eliminated (by means of standard methods for statistical clustering)
all the states associated to free traffic-phase where the intended detection loses its meaning. Above that, we analyze data
from fast lanes only, because of a significant proportion of lorries, buses, tracks in main lanes. Such a reduction brings three
important advantages. Firstly, in fast lanes there is an extremely low proportion of slow cars and no long vehicles. Secondly,
fast-lane vehicles are coerced to more intensive interactions (due to higher speeds) and thirdly, fast-lane vehicles cannot be
overtaken. These three factors strengthen target-ambitions of this paper.

The data records have been adapted into a set (or sets) having a form

Ω =

{
(τ (in)k , τ

(out)
k , vk, ξk) ∈ T (in)

× T (out)
× V ×Ξ : k = 1, 2, . . . ,N

}
, (1)

that is suitable for synoptical mathematical formulations. Here T (in) and T (out) are the sets of chronologically-ordered times
when the kth vehicle entered/leaved themeasuring device, respectively. V is the set of associated velocities andΞ stands for
the set of vehicular lengths. Denoting the sampling size by ℓ (which is here consistently considered equal to 50) and number
of data-samples by K we acquire the data sub-samples

Φj =

{
(τ (in)k , τ

(out)
k , vk, ξk) ∈ Ω : k = (j − 1)ℓ+ 1, (j − 1)ℓ+ 2, . . . , jℓ

}
. (2)

For each sub-sampleΦj (j = 1, 2, . . . , K ) one can calculate the local flux

Jj =
ℓ

τ
(in)
jℓ − τ

(out)
(j−1)ℓ+1

(3)

and local average velocity v̄j = ℓ−1∑jℓ
k=(j−1)ℓ+1vk. Besides, the expression

ϱj =
Jj
v̄j

(4)

is accepted as a plausible approximation of the local vehicular density (according to [5,10]). Individual (re-scaled) time-
clearances are then calculated using the standard definition (e.g. [5])

tk =

ℓ

(
τ
(in)
k − τ

(out)
(k−1)

)
∑⌈k/ℓ⌉ℓ

i=(⌈k/ℓ⌉−1)ℓ+1 τ
(in)
i −

∑⌈k/ℓ⌉ℓ
i=(⌈k/ℓ⌉−1)ℓ+1 τ

(out)
i−1

, (5)

which ensures that for all sample-means it holds x̄j := ℓ−1∑jℓ
k=(j−1)ℓ+1tk = 1. As it is well known (from [13–18]), such a re-

scaling procedure brings a considerable profit when revealing general relations in many economic/physical/biologic/socio-
physical/purely mathematical systems. In analogy, we define (re-scaled) space-clearances by

xk =

vk−1ℓ

(
τ
(in)
k − τ

(out)
(k−1)

)
∑⌈k/ℓ⌉ℓ

i=(⌈k/ℓ⌉−1)ℓ+1 vi−1τ
(in)
i −

∑⌈k/ℓ⌉ℓ
i=(⌈k/ℓ⌉−1)ℓ+1 vi−1τ

(out)
i−1

. (6)
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Table 1
Basic information on empirical data.

w Window ϱ [km−1
] ∆ϱ [km−1

] J [h−1
] ∆J [h−1

] |Iw | β̂

1 W1 25 5 500 2500 201200 0.72455
2 W2 30 5 650 2350 163600 1.0217
3 W3 35 5 700 2500 121750 1.2597
4 W4 40 5 700 2500 80600 1.4347
5 W5 45 5 700 2500 52850 1.6197
6 W6 50 5 1000 2000 31200 1.7382
7 W7 55 5 1000 1800 15850 1.8934
8 W8 60 5 1000 1500 8000 2.0526
9 W9 65 5 1000 1500 2850 2.1569

Fig. 1. Brownian distance-correlation of velocities. We plot a value of the distance-correlation coefficient R(Vw, V (n)
w ) enumerated for chronologically-

ordered sets (8) and (10) in various density regions (see legend for detail specifications).

Many recent investigations have shown that in regions of congested traffic the evolution of traffic quantities shows signs
of chaotic systems (e.g. [10,19,20]). It means that a small change of initial conditions leads to sharp changes in evolution.
Accompanying effects are, as is proven, significant divergences in probabilistic characteristics detected in various subspaces
of the phasic diagram [21,22]. Indeed, similar effects have been revealed in the past also for empirical vehicular data.
In [1,4,5,12,15,16] authors have shown that statistical distributions of traffic micro-quantities are intensively depending
on actual density and flux. To eliminate undesirable mixing of different traffic states and to stabilize estimation-procedure
aimed for this paper we proceed to the tried and tested stabilization-method (see [1,4,5,12,16]). Factually, such a method is
based on a segmentation by density ϱ and flux J. Thus, for a fixed window-size (∆ϱ,∆J ) we define a flux–density window
W (ϱ, J) = [ϱ, ϱ + ∆ϱ] × [J, J + ∆J ] and analyze empirical data separately by various windows (indexed by w for brevity).
Therefore, the segmentation

Iw ≡ I(W (ϱ, J)) = {j : (ϱj, Jj) ∈ W (ϱ, J)}

is a procedure selecting all sub-samples associated with the chosen wth flux–density window. This is a central strategy of
all following considerations.

Consistently, in the entire text we use the flux–density windows summarized in Table 1.

3. Correlation analysis in subregions of congested phase

An elementary insight (slightly superficial) into the range of inter-vehicular interactions can be done with help of
correlation analysis. It is evident that general correlations of various traffic micro-quantities are a result of mutual influence
among several consecutive cars. Therefore many researchers focused their attention on studies of associated correlation
coefficients. For example, the articles [5,23–26], review [10], or book [19] analyze statistical links between selected
traffic quantities and discuss some consequences. However, frequently-used methodics applying the standard (Pearson)
correlation coefficients suffers from many shortcomings. Firstly, correlation coefficient (see formula (3.19) in [19] and
commentary below) detects a linear relationship between two random variables. It means that for non-linearly linked
variables (which is a most probable situation in congested-traffic states) such a methodology fails. Secondly, zero value
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Fig. 2. Brownian distance-correlation of space-clearances. We plot a value of the distance-correlation coefficient R(Xw, X (n)
w ) enumerated for

chronologically-ordered sets (7) and (9) in various density regions (see legend for detail specifications).

of the classical Pearson correlation coefficient does not imply statistical independence because the applicable theorem is
enunciated as a one-sided implication only (see [27]). This problem can be, however, eliminated by introducing Brownian
distance-correlation (see Appendix A.1). Such a type of correlator relies on a stronger version of the above-cited theorem.
In this case, zero value of Brownian correlation is, as proven in [27,28], a sufficient condition for statistical independence.
Thirdly, non-zero value of correlation does not imply causality. Thus, it may occur that two strongly-correlated variables are
not causatively linked. Despite these deficiencies, however, analyzing the Brownian correlations of empirical data can be
illustrative for an approximate insight into the phase structure of congested traffic. Therefore, denoting

Xw := {xkℓ+1, xkℓ+2, . . . , x(k+1)ℓ : k ∈ Iw}, (7)

and

Vw := {vkℓ+1, vkℓ+2, . . . , v(k+1)ℓ : k ∈ Iw} (8)

the sets of individual clearances/velocities (chronologically ordered and associated to thewth flux–density window) we can
proceed to evaluation of the distance-correlation coefficients R(Xw, X (n)

w ) and R(Vw, V (n)
w ),where (for natural number n)

X (n)
w := {xkℓ+n+1, xkℓ+n+2, . . . , x(k+1)ℓ+n : k ∈ Iw} (9)

and

V (n)
w := {vkℓ+n+1, vkℓ+n+2, . . . , v(k+1)ℓ+n : k ∈ Iw}. (10)

It illustratively follows fromFig. 1 that values of correlation coefficientR(Vw, V (n)
w ) are decreasingwithn in all density regions.

If n > 4 is fixed the evolution of R(Vw, V (n)
w ) clearly shows a separation of regions with different level of synchronization.

If analyzing R(Xw, X (n)
w ) in Fig. 2 one can see that the most intensive correlations are detected for n = 1, which means that

free gap to a previous car is significantlymore correlatedwith a previous clearance thanwith clearances between other cars.
Such findings correspond to our intuitive conjectures as well as to the comparable results published in [23,24].

It directly follows from the previous text that an isolated analysis of correlations is (if intending to estimate an interaction
range) ineffective. Therefore it is necessary to search for a supplementary instrument leading to a theoretical interpretation
of given values of correlation coefficients. For those purposes we now choose the local thermodynamic model [1,12] whose
legitimacyhas been verified inmany researches [3–6,15]. Themainmerits of thatmodel are the facts that it is exactly solvable
and furthermore, it authentically reproduces the phase structure of congested traffic. Here we introduce a generalized
version of that model taking into account that interaction forces exist among many succeeding agents.

First of all, however, we consider the stochastic particle-system composed of M identical particles located in angular
positions a1(τ ) < a2(τ ) < · · · < aM (τ ) < a1(τ ) + 2π =: aM+1(τ ) and moving with positive speeds v1(τ ), v2(τ ), . . . , vM (τ ).
Level of stochasticity is here controlled by the coefficient of stochastic resistivity β ⩾ 0. A short-ranged version of this
ensemble is described by the Hamiltonian

H (a(τ ), v(τ )) =
1
2

M∑
k=1

(vk(τ ) − vd)
2
+

2π
M

M∑
k=1

1
ak+1(τ ) − ak(τ )

, (11)
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Fig. 3. A course of the theoretical correlation-function. We depict estimated evolution of the Brownian correlation coefficient r1 induced by changing
parameters: range m (see legend) and stochastic resistivity β (see the horizontal axis). Graphs have been constructed for a gas composed of M = 100
particles. Vertical lines represents specific values of resistivity detected in real-road data for various flux–density windows (see the last column in Table 1).
Empirical values of Brownian correlation (see Fig. 2) are visualized bymeans of averages (black bullets) and associated deviation-intervals (black abscissae)
demarcated by standard deviations.

where vd is the desired velocity. This short-ranged variant has been successfully solved in [12]. The most important result
of the cited article is a determination and validation of the probability density for distance x between neighboring particles
(headway distribution). It reads

℘(x) = Ae−
β
x e−Dx, (12)

where

D = β +
3 − e−

√
β

2
, (13)

A−1
= 2

√
β

D
K1(2

√
βD). (14)

HereΘ(x) and Kν(x) stand for the Heaviside unit-step function and the Macdonald’s function of the νth order, respectively.
Denoting now aM+i(τ ) := ai(τ ) for all i = 1, 2, . . . ,M one can define a middle-ranged version of the model. The

corresponding Hamiltonian can be expressed as

Hm(a(τ ), v(τ )) =
1
2

M∑
k=1

(vk(τ ) − vd)
2
+

2π
M

M∑
k=1

m∑
i=1

1
ak+i(τ ) − ak(τ )

, (15)

where the natural number m > 1 to be referred to as an interaction range. At the moment, associated steady-states
of the middle-ranged version are not analytically calculated, however, numerical representation of the model (based
on principles of the simulated annealing [2]) allows obtaining steady-distributions for all micro-quantities. Steady-state
locations ã1, ã2, . . . , ãM can be then used for enumerating steady-state headways xk := 2π (ãk+1 − ãk)/M, for which the
average value is exactly equal to one. Fixing the interaction rangem and stochastic resistivityβwecan calculate the Brownian
correlation coefficient rn := R(X,Xn) for vectors X = (x1, x2, . . . , xM ) and Xn = (xn+1, xn+2, . . . , xn+M ). In this way, in fact,
we construct numerical estimations of the theoretical correlation-functions rn = rn(β,m). A course of the most important
correlation-function r1 = r1(β,m) is sketched in Fig. 3.

If m = 1 one can see that correlation-function r1(β, 1) slightly fluctuates around a very low value, which represents, in
fact, a statistical independence among neighboring headways. Situation dramatically changes for m > 1. Besides elevated
values r1(β,m) one can also detect an upward trend, i.e. ∂r1/∂β > 0. Curves r1(β,m) and r1(β,m + 1) are not intersecting
which brings a stronger interpretation-potential. Another significant benefit of these results follows from the fact that
numerical values and empirical values lie in the same region. Therefore, one can use the correlation-function r1 = r1(β,m)
for a rough estimation of the interaction range. As is apparent from Fig. 3 the estimated range m is depending on traffic
density. Longer ranges are detected for lower densities, whereas correlation drops with increasing density. To be specific,
Table 2 (the second column denoted bymr ) summarizes our preliminarily estimations for all flux–density windows.
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Table 2
Detection of an interaction range.

Window mr (correlation analysis) mmc (multi-clearance analysis) msr (rigidity analysis)

W1 3–6 5 5
W2 2–4 4 4
W3 2–3 3 3
W4 2–3 2 3
W5 2 2 4
W6 2 2 2
W7 2 2 2
W8 2 2 2
W9 2 2 2

4. Multi-clearance as a random variable

An indispensable part of investigations intended is the statistical analysis of multi-clearances. Similarly to the articles [5,
7,26,29] we definemulti-clearances of the order µ ∈ N (µth multi-clearance) by a formula

xk|µ = xk + xk−1 + · · · + xk−µ. (16)

Then the associated histogram-functionH(x|µ) quantifies a statistical distribution of cumulated gapsmeasured amongµ+2
succeeding carsmoving in clusters belonging to a chosen flux–densitywindow. Note that due to the definition (16) the space
occupied by individual vehicles is eliminated from our considerations. In agent’s systems, where interaction rules are strictly
short-ranged, one can reasonably expect that succeeding clearances are not correlated. Therefore random variables x|µ1 and
x|µ2 (for µ1 ̸= µ2) are independent which is resulting in the convolution formula

℘(x|µ) = ℘(x) ⋆ ℘(x|µ− 1) ≡

∫
R
℘(s)℘(x − s|µ− 1) ds. (17)

Using (12) one finds (see [30])

℘(x|µ) = Θ(x)
(Ax)µ

µ!
exp

[
−
β(µ+ 1)2

x
− Dx

]
. (18)

Unfortunately, Eq. (18) represents a relevant prediction for ensembles with short-ranged forces only. If, in contrast,
interactions among vehicles are middle-ranges, which is expectable for real-road traffic, the above-applied convolution rule
is not further applicable and the prediction (18) therefore fails. However, one can hypothesize that the two-parametric family
of probability densities

℘(x|µ) = AΘ(x)xα exp
[
−
β

x
− Dx

]
, (19)

where

D =
α

µ
+
β

µ2 +
3 − e−

√
β/µ

2µ
, (20)

A−1
= 2

(
β

D

) α+1
2

Kα+1
(
2
√
Dβ

)
, (21)

can be used as a theoretical prognosis of real-road multi-clearance distributions. Analogous method has been successfully
applied in [5].

The afore-mentioned hypothesis will now be tested by a special modification of the experienced MDE method. That
method (referred to as Minimum Distance Estimation on equivariance curves) is based on estimating optimal parameters
in distribution (19) while maintaining a value of the variance (to be equal to the squared deviation measured in data). This
strategy (discussed in detail in Appendix A.2) stabilizes an estimation procedure and dramatically reduces the time required
for numerical calculations. Values of statistical distance

∥℘̂(x|µ) − H(x|µ)∥ =

(∫
R

|℘̂(x|µ) − H(x|µ)|2 dx
)1/2

(22)

measured between the empirical histogram-function H(x|µ) and the MDE-estimation ℘̂(x|µ) (visualized in Fig. 4) confirm
that the hypothesis on GIG-distributedmulti-clearances is well-founded. Indeed, as is seen in Fig. 5 the analytical prediction
(19) estimate empirical distributions very convincingly, which is important since the below-mentioned detection of a
interaction range requires an increased accuracy of estimations used. To be complete, in Figs. 6, 7 we plot all estimated
parameters α̂µ and β̂µ.
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Fig. 4. Deviation between empiricalmulti-clearance distributions and relevant estimations.Weplot the changes of the statistical distance ∥℘̂(x|µ)−H(x|µ)∥
with changing order µ in various flux–density windows (see legend).

Fig. 5. Multi-headway distributions for the fourth window, i.e. forw = 4. Step-functions visualize multi-clearance distributions detected in empirical data,
whereas dashed curves correspond to associate estimations (19) obtained by the modified Minimum Distance Estimation described in Appendix A.2.

5. Detection instrument based on a perturbation function

In the actual section we plan to introduce an analytical method for deciding howmany immediately neighboring cars (in
a driving direction) influence decision-making procedures of a given driver. This method is founded on testing statistical
independence of different multi-clearances. It is well known that if random variables x and x|µ are uncorrelated then
probability density ℘(x|µ + 1) can be computed with help of a convolution rule ℘(x|µ + 1) = ℘(x) ⋆ ℘(x|µ). Therefore a
perturbation function

ϕ(x|µ) =

∫ x

−∞

(
H(y|µ) − H(y) ⋆ H(y|µ− 1)

)
dy. (23)

reflects a degree of independence between x and x|(µ − 1) in a following sense. If ϕ(x|µ) is insignificantly deflected from
zero (in a statistical sense) then a presumption of negligible mutual interactions is not justified, which leads to suspicion
that associated cars interact. Thus, courses of perturbation functions then help us to quantify an interaction intensity among
farther vehicles. Advantageously, applying knowledge of the previous sections we define a smoothed perturbation function

ψ(x|µ) =

∫ x

−∞

(
℘̂(y|µ) − ℘̂(y|0) ⋆ ℘̂(y|µ− 1)

)
dy, (24)
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Fig. 6. Estimated values for parameter α̂µ.We plot the square-root of the first estimated parameter for various order (x-axis) and flux–density window
(legend).

Fig. 7. Estimated values for parameter β̂µ.We plot the square-root of the second estimated parameter for various order (x-axis) and flux–density window
(legend).

that eliminates a step character of empirical histograms. Realistic courses of smoothed perturbation functions ψ(x|µ)
(analyzed for samples of 5000 multi-clearances) are neatly shown in Fig. 8.

For quantifying a deviation of the smoothed perturbation function (24) from zero level we use the standard Kolmogorov
distance

G(µ) = sup
x∈R

|ψ(x|µ)| . (25)

Hence, if the Kolmogorov distance G(µ) is greater than the critical value Gcrit = 1.36
√
2/5000 (for the two-sample

Kolmogorov–Smirnov test) then the null hypothesis (on negligible correlations among vehicular movements) is rejected
(at significance level 0.05). In the opposite case the null hypothesis may not be rejected and therefore there exists a serious
suspicion that those two cars are mutually affected. Observing Fig. 9 we can see that a rejection/acceptance of the null
hypothesis depends on a specific location in flux–density diagram. Whereas in regions of lower densities (for w = 1) the
null hypothesis is rejected for µ ∈ {1, 2, 3, 4}, for regions of higher densities (w ∈ {4, 5, 6, 7, 8, 9}) the null hypothesis
is rejected for µ = 1 only. However, a rejection for µ = 1 in all regions confirms our initial hypothesis that vehicular
interactions are not short-ranged. Indeed, if vehicular influences were short-ranged then surely ℘̂(y|1) = ℘̂(y|0) ⋆ ℘̂(y|0),
which implies G(µ) = 0. Therefore, in Table 2 (the third column denoted by mmc) we present the second estimation of a
interaction-range (determined by means of multi-clearance distribution). We note that Kolmogorov distance enumerated
for eight and ninth windows (see crosses in Fig. 9) suffers from a lack of data.
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Fig. 8. Smoothed perturbation functions. We figure the functions ψ(x|µ) valid for the third flux–density window. Various curves correspond to various
interaction ranges (see legend). Amplitude of those functions coincides with the Kolmogorov distance G(µ) defined in (25).

Fig. 9. Kolmogorov–Smirnov test. We visualize the Kolmogorov distance G(µ) as it changes with the window-indexw and the order of multi-clearance µ.
Gray zone represents a critical band in which the null hypothesis may not be rejected.

6. Detection instrument based on a statistical rigidity

It has been investigated in [2,4,15,29,33] that more effective tool for inspection of traffic microstructure, if comparing
with classical approaches using clearance distributions, is the statistical rigidity. This advanced characteristics is understood
as follows. Let us denote by UL the number of vehicles occurring (at a fixed time) inside the road-segment of a length L.
Statistically, UL(t) represents a random process (a counting process), whose average value is equal to L due to the fact that
clearance statistics is studied in the re-scaled version. In general counting processes, however, may not be met an intuitive
condition E(UL) = L. Therefore variance E(UL − E(UL))2 and generalized variance E(UL − L)2 do not necessarily represent the
same values. A functional dependency of the generalized variance on L, here denoted by∆(L), is the statistical rigidity.

It is proven by theoretical derivations in [4,15] that a course of the rigidity is uniquely determined by a probability density
for gaps among succeeding agents/particles. However, this direct link is valid only if succeeding clearances are independent
and identically distributed (i.i.d. property). If assuming that such a condition is fulfilledwe candetermine a linear asymptotics
∆(L) = χL + γ + O(L−1) of the rigidity. For ensembles with GIG-distributed gaps (see formula (12)) it holds

χ =
β + 2
D

− 1, γ =
6
√
Dβ + Dβ

(
21 + 4Dβ + 16

√
Dβ

)
24

(
1 +

√
Dβ

)4 . (26)

(See Fig. 10)
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Fig. 10. Statistical Rigidity. We plot rigidities ∆(L), ∆0(L) for not-shuffled/shuffled clearances respectively. Not-shuffled data are plotted by continuous
curves whereas shuffled data are plotted by dashed curves.

Whereas i.d. condition can be, without any doubt, accepted in all traffic systems, independency is regarded as a disputable
property. In other words, a deviation of empirical rigidity from analytical prognosis can be used as a indicator of influenced
behavior of drivers. The last detection-method is based on that principle. We analyze the statistical rigidity for two sets:
the set of empirical clearances in an original order and the set of clearances which have been repeatedly shuffled to break
all correlation linkages among succeeding clearances. These two rigidities are here denoted by∆(L) and∆0(L) respectively.
(See Fig. 10.) Roughly speaking, angular deflection

η = arctg (χ ) − arctg (χ0) (27)

between associated asymptotesχL+γ andχ0L+γ0 will be here used for estimations intended. Similarly, the sameprocedure
can be then applied for multi-clearances of order µ. It means that angular deflection

η(µ) = arctg (χ (µ)) − arctg (χ0(µ)) (28)

reveals whether interactions exist between vehicles having µ cars among themselves. Range-detection can be then
performed as follows. If a value η lies out of the fluctuation band (demarcated by pure statistical fluctuations – see a
note below) then the statistical rigidities ∆(L) and ∆0(L) are different, which means that succeeding clearances have to
be correlated. It implies the fact thatm cannot be equal to one. To be specific, if η > ηcrit (see Fig. 11) then a corresponding
interaction is not a short-ranged. Analogously, if η(µ) > ηcrit then the estimated rangem > µ+1. Since η(µ) is a decreasing
function (in all flux–density regions, basically) there always exists µ0 so that η(µ) < ηcrit for µ ⩾ µ0 and η(µ) > ηcrit
for µ < µ0. Then m := µ0 + 1 is the estimated range. Specific results of such an estimation procedure are summarized in
Table 2 (the fourth column denoted bymsr ).

A note: For completeness, we add that a threshold-value ηcrit ≈ 0.0203 is derived by an analysis of statistical fluctuations
of regression coefficients measured for random uncorrelated data.

7. Summary, discussion and conclusion remarks

In the current paper we have presented three independent methods for estimating the so-called interaction range,
i.e. number of preceding cars influencing a decision-making procedure of a given driver. The first method is based on a
comparison of Brownian distance-correlation determined for ensembles of vehicles and agent-ensembles whose agents
interact via two-body hyperbolical potential with a prescribed range. The second method imposes on recent knowledge on
statistical distributions of vehicular random variables (like time clearances, time headways, spatial gaps, spatial headways,
velocities). Theoretical predictions for a distribution of those variables or their compositions allow to investigate a statistical
dependency among variablesmentioned. Level of dependency is quantified bymeans of the perturbation functionmeasuring
distance between convolutional (i.e. calculated by a convolution) and empirical distributions of cumulative gaps. The third
method is founded on a test of the statistical rigidity evaluated for clusters of several consecutive vehicles. Active interaction
among vehicles leads to deviations between originally-ordered and randomly-shuffled clusters. Thus, a supra-threshold
deflection between asymptotical regression-curves (estimating rigidities for not-shuffled and shuffled data) reveals mutual
linkages among cars.
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Fig. 11. Evolution of angular deflection. We figure changes of the deflection function (28) induced by changing multi-clearance order µ and changing
location in the flux–density diagram.

The main result of this research is an irrefutable fact that vehicular interactions are definitely not short-ranged. It means
that a generally-accepted premise (on short-ranged traffic interactions) do not correspond to traffic reality. In fact, in all
congested-traffic regimes a minimum number of actively-followed vehicles is two. Moreover, for low-density congested
traffic the interaction range reaches unexpectedly high values (four or five), which means that a driver tracks four of five
cars moving in front of her/him.
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Appendix A

A.1. Brownian distance-correlation

Consider a random sample (X,Y) = {(Xk, Yk) : k = 1, 2, . . . , n} of n i.i.d. random vectors X and Y from Euclidean spaces
Rp and Rq, respectively. Denote the Euclidean distances akℓ := ∥Xk − Xℓ∥p and bkℓ := ∥Yk − Yℓ∥q. For all k, ℓ = 1, 2, . . . ,N
we define

Akℓ = akℓ − āk• − ā•ℓ + ā••, (29)

where

āk• =
1
n

n∑
ℓ=1

akℓ; ā•ℓ =
1
n

n∑
k=1

akℓ; ā•• =
1
n2

n∑
ℓ=1

n∑
k=1

akℓ. (30)

Analogously one can define Bkℓ = bkℓ− b̄k• − b̄•ℓ+ b̄••. The Brownian sample distance-covariance V(X,Y) is then defined as

V2(X,Y) =
1
n2

n∑
ℓ=1

n∑
k=1

AkℓBkℓ. (31)

Then the Brownian sample distance-variance V(X) reads

V2(X) =
1
n2

n∑
ℓ=1

n∑
k=1

A2
kℓ. (32)
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Finally, the Brownian sample distance-correlation R(X,Y) is defined by

R2(X,Y) =

⎧⎨⎩
V2(X,Y)√
V2(X)V2(Y)

; V2(X)V2(Y) > 0;

0; V2(X)V2(Y) = 0.
(33)

As is proven in [27,28] the Brownian correlation is zero if and only if the random vectors are independent.

A.2. Minimum distance estimation on equivariance curves

LetH(x) be an estimated histogram-function for a randomvariable x located inDom(H) ⊂ [0,+∞), forwhich the average
value is 1 and the squared deviation is σ 2.DenoteΩ a parametric space of real parameters α, β. Suppose thatΩ is a compact
subset ofR2. Let℘(x|(α, β)) be a two-parametric family of probability-densities for which the first and the secondmoments
exist and, moreover, E(x) = 1. Then the curve

Cσ :=

{
(α, β) ∈ Ω :

∫
∞

0
x2 ℘(x|(α, β)) dx = 1 + σ 2

}
(34)

lying in the (α, β)−plane is called an equivariance curve. Let ∥·∥ be the arbitrary norm defined on a function space L2(0,+∞)
of quadratically integrable functions. Then a functional g(α, β) returning a norm ∥H(x) − ℘(x|(α, β))∥ represents a general
metrics between two densities H(x) and ℘(x|(α, β)). The minimization

(α̂, β̂) := argmin
(α,β)∈Cσ

g(α, β) = argmin
(α,β)∈Cσ

∥H(x) − ℘(x|(α, β))∥ (35)

will be referred to as a minimum distance estimation of H(x) on an equivariance curve Cσ . Mathematically, this task can be
identified with finding local/global extremes of a given function subject to equality constraints. For tasks of such a type the
most effective solver is based on the method of Lagrange multipliers. Thus, introducing the Lagrangian

L(α, β, λ) := g(α, β) − λ

∫
∞

0
x2 ℘(x|(α, β)) dx − λ(σ 2

+ 1) (36)

one can calculate all critical points (αj, βj) ∈ Cσ of the Lagrangian by solving

∇α,β,λL(α, β, λ) = (0, 0, 0). (37)

If L(α, β, λ) is continuously differentiable (which is an usual situation in most cases) then the global minimum of g(α, β)
can be localized in a finite set Qσ := {(αj, βj) : j = 1, 2, . . .} ∪ (∂Ω ∩ Cσ ). Thus,

(α̂, β̂) = argmin
(α,β)∈Qσ

g(α, β) (38)

is the global minimum of the functional g(α, β) investigated under the condition VAR(x) = σ 2.
For intentions of this paper we specify the afore-mentioned methodology as follows. Distribution of random variable x is

estimated by the generalized inverse Gaussian distribution [31–33]

℘(x|(α, β)) = Axα exp
[
−
β

x
− Dx

]
(39)

with scaling and normalization constants

D = α + β +
3 − e−

√
β

2
, (40)

A−1
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
(
β

D

) α+1
2

Kα+1(2
√
βD); β ̸= 0;

Γ (α + 1)
(α + 1)α+1 ; β = 0.

(41)

Function norm is suggested to be ∥f (x)∥2
=

∫
∞

0 |f (x)|2 dx which is, in fact, the standard L2−norm. Then the associated
Lagrangian reads

L(α, β, λ) :=

∫
∞

0
|H(x) − ℘(x|(α, β))|2 dx − λ

(
β Kα+3(2

√
βD)

DKα+1(2
√
βD)

− σ 2
− 1

)
. (42)

In this case the equivariance curve is determined by the equality

β Kα+3(2
√
βD)

DKα+1(2
√
βD)

= 1 + σ 2. (43)
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Fig. 12. Equivariance curves. We plot the curves Cσ for selected values of the squared deviation σ 2. Gray area corresponds to the parametric space Ω
associated with σ 2

= 0.5.

For clarity, some of equivariance curves are visualized in Fig. 12. Implications

β = 0 ⇒

∫
∞

0
x2 ℘(x|(α, 0)) dx =

2 + α

1 + α
, (44)

α = 0 ⇒

∫
∞

0
x2 ℘(x|(0, β)) dx =

β K3(2
√
βD)

DK1(2
√
βD)

(45)

and a logical restriction 0 ⩽ σ 2 ⩽ 1 lead to the demarcation of the parametric spaceΩσ (see Fig. 12).

A.3. Testing the stochastic stability for Brownian distance correlation

Here we discuss whether the stochastic process investigated (i.e. vehicular re-scaled clearance analyzed in a fixed flux–
density window) is statistically stable with respect to the correlation instrument used. For these intentions we divide the
set Xw = {x1, x2, . . . , xQ } of all individual clearances (associated to the wth flux–density window) into subsets

Z1 = {x1, x2, . . . , xδ}, Z2 = {xδ+1, xδ+2, . . . , x2δ}, . . . ,

Zq = {x(q−1)δ+1, x(q−1)δ+2, . . . , xqδ} (46)

where δ is the sampling size and q = ⌊Q/δ⌋. Denoting

Zn
1 = {xn+1, xn+2, . . . , xn+δ}, Zn

2 = {xn+δ+1, xn+δ+2, . . . , xn+2δ}, . . . ,

Zn
q = {xn+(q−1)δ+1, xn+(q−1)δ+2, . . . , xn+qδ} (47)

the subsets of shifted clearances we then calculate respective sample means

rn(δ) :=
1
q

q∑
i=1

R(Zi, Zn
i ), (48)

which are depending on the sampling size. Subsequently, the stochastic stability is tested by means of the functional
dependence rn = rn(δ). In Fig. 13 we plot the curves rn(δ) enumerated for selected flux–density windows w ∈ {1, 2, . . . , 7}
and shifts n ∈ {1, 3, 5, 7}. From all sub-figures it is quite obvious that all processes are stabilizing for increasing δ. To be
specific, for δ > 2500 all curves rn = rn(δ) are fluctuating around a certain constant value without any significant trend.
Respective limiting values limδ→+∞rn(δ) are then considered as estimates for correlations analyzed in the third section.
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Fig. 13. Test of stability for the correlation instrument used. We show how the distance-correlations rn(δ) (see the formula (48)) are changing with the
sampling size δ. To illustrate such an evolution we plot four alternatives (for n = 1, n = 3, n = 5, and n = 7) analyzed in seven flux–density windows for
which the number of headways is sufficient.

A.4. Table of indexing

Here (see Table 3) we summarize all important constants/indexes used in this paper.

Table 3
Indexing in the article.

Index/Constant Meaning

N Length of a data sample
k = 1, 2, . . . ,N Index for individual data-item
ℓ = 50 Size of all sub-samples
K = ⌊N/ℓ⌋ Number of all sub-samples
j = 1, 2, . . . , K Index of a sub-sample
w = 1, 2, . . . , 9 Index of a flux–density window (a small sub-region in flux–density

map)
n = 1, 2, . . . , 10 Index of a forerunner, i.e.

n = 1 means a nearest neighbor, n = 2 means a next-to-nearest
neighbor

M = 50 Number of particles on a ring (in the local thermodynamic model)
m ∈ N Interaction range (number of actively-followed vehicles)
µ ∈ N Index of a multi-clearance, i.e

µ = 0 means a clearance, µ = 1 means a space-gap between three
vehicles
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