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Abstract
We discuss statistical properties of vehicular headways measured on signa-
lized crossroads. On the basis of mathematical approaches, we formulate
theoretical and empirically inspired criteria for the acceptability of theoretical
headway distributions. Sequentially, the multifarious families of statistical
distributions (commonly used to fit real-road headway statistics) are con-
fronted with these criteria, and with original empirical time clearances gauged
among neighboring vehicles leaving signal-controlled crossroads after a green
signal appears. Using three different numerical schemes, we demonstrate that
an arrangement of vehicles on an intersection is a consequence of the general
stochastic nature of queueing systems, rather than a consequence of traffic
rules, driver estimation processes, or decision-making procedures.

Keywords: microstructure of vehicular streams, analytically soluble models,
signalized intersection models
PACS numbers: 05.40.-a, 89.40.-a, 47.70.Nd

(Some figures may appear in colour only in the online journal)

1. Introduction

Because of the empirical background, modeling of spatial positions of vehicles in the vicinity
of signalized intersections continually attracts interest from researchers. As can be under-
stood, the detection of statistical distributions of spatial/time headways among vehicles may
lead to a more accurate determination of intersection capacities, which finally results in
economic profit. Indeed, the importance of the topic can be inferred from the very frequent
recent appearance of scientific papers dealing with intersection analyses. However, a majority
of those works focus on macrodescription (for example, [1–4]) or (if concentrating on
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microstructure) on average values of traffic microquantities (for example, [5–8]). In the past
few years many studies investigating detailed statistical distributions of vehicular headways
(spatial or time) between neighboring cars arising close to the stop line have been published.
Some of them focus on the distribution of departure time intervals ([9–12]), and others on the
distribution of spatial gaps between cars waiting for a green signal ([13, 14]).

In this article we intend to analyze a larger amount of original individual data gauged on
various crossroads (located in the Czech cities Praha, Pardubice, and Hradec Králové) and to
introduce suitable theoretical predictions for relevant probability densities of vehicular
microquantities. Moreover, our aim is to create numerical representations of crossroad models
leading to statistically consistent distributions. Finally, the analytical clearance distributions
presented will be confronted with theoretical criteria derived from mutual vehicular inter-
actions of short/middle-range nature. In the last part of the work, we will try to provide insight
into the nature of the distributions examined.

A note: To prevent any misinterpretation, we remark that the respective descriptions for
ranges of interactions (short/middle/long ranges) reflect how many neighboring elements
(agents, particles, vehicles) interact with a chosen element. If a movement of the chosen agent
is influenced by an immediately neighboring agent only, we will call such an interaction a
short-ranged one. If there exist interactions among all agents in a system, this is referred to as
a long-ranged case. Other interaction types are then classified as middle-ranged ones.

2. Empirical departure clearance statistics

The vehicular data analyzed in this work (see figure 1) were gauged on multi-lane inter-
sections located in the centers of the Czech cities Praha (Prague), Pardubice and Hradec
Králové. All the test intersections are constituents of an extensive network of roads and
crossroads inside the internal metropolis and are therefore strongly saturated. In all cases the
time interval between two green signals (on one crossroad) is short, which means that some

Figure 1. The empirical histogram of departure clearances. The constituent signs
represent the statistical frequency of scaled net time gaps among neighboring cars
leaving the intersections located as indicated in the legend.
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cars are not able to reach the threshold of the following intersection during one green phase
and therefore have to wait for another green light. This finally leads to a substantial decrease
in average speed for cars moving among crossroads, i.e. one can observe here the effects
detectable ordinarily in congested traffic regimes (see [15, 16]).

The traffic measurement has been organized as follows. The spontaneous traffic flow near
the chosen intersection (see table 1) has been controlled by traffic lights in a usual mode. No
external intervention has been applied. The gauging procedure (i.e. the measurement of the
departure times τk(in) and τk(out)—see the mathematical notation below) started at the moment
of replacing the red signal by the green one and finished immediately after another red signal.
We add that all analyzed traffic quantities have been measured only at intersections where
other cars (moving in different lanes or in different arms) do not influence the gauged cars.

Thus, let the symbols τk(in) and τk(out) indicate the times at which the front/back bumpers
of the kth car = …k N( 0, 1, 2, , ) have intersected a reference line (the stop line, typically) at
the chosen intersection threshold. Then the time clearance between succeeding cars is defined
as

τ τ= − = …−t k N: ( 1, 2, , ). (1)k k k
(in)

1
(out)

The fundamental quantity analyzed in our article is =z t t̄k k for k = 2,…,N, where
= ∑ −=t t N¯ ( 1)k

N
k2 , and it is referred to as the scaled time clearance. Note that the time

gap between the first vehicle and the second vehicle has been discarded from the analysis. As
shown in [9, 11, 12], the gap t1 is longer than the other gaps. This is essentially due to the
basic kinematic effect of a limited acceleration (see [12]). The empirical probability density
℘ z( )emp is then called the (scaled) time clearance distribution. To eliminate an unwelcome
dependence of empirical distributions on the binning (quantization of the detected data into
given smaller intervals—bins), one can define the integrated probability density (cumulative
distribution function)

∫= ℘
−∞

P z y y( ) ( )d . (2)
z

emp emp

The general quantitative results of a preliminary statistical analysis of gauged traffic data are
summarized in table 1, where it can be seen that the mean clearance is about 1.6 s (with a
standard deviation approximately equal to 0.7 s). Here we remark that the quantity measured
for the purposes of this article (net gap) is different from the quantity (gross headway)
analyzed in the research paper [9].

3. Criteria for acceptability of analytical clearance distributions

Owing to the empirical background of the topic investigated in this research, the curves
representing theoretical approximations of the intersection clearance distribution have to
fulfill both mathematical and empirically inspired criteria. Whereas mathematical criteria are

Table 1. Evaluation of data records before the scaling procedure is carried out.

Number Location Sample size Mean clearance Variance

1 Prague—crossroad 1 3785 1.6237 s 0.6649 s2

2 Prague—crossroad 2 4022 1.5226 s 0.5023 s2

3 Pardubice 3279 1.6110 s 0.4997 s2

4 Hradec Králové 8795 1.5820 s 0.4185 s2
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deduced from exact theoretical definitions, empirical criteria reflect real features of traffic
microstructure distributions (see for example [18, 25]). The measure for acceptability of
theoretical curves can therefore be quantified using the number of fulfilled criteria.

First of all, we briefly summarize the mathematical criteria. If is intended that ℘ z( ) will
be declared a theoretical prediction for a time clearance distribution, it should fulfill the
following theoretical criteria: (T1)—non-negativity: ∀ ∈ ℘ ⩾z z: ( ) 0; (T2)—the support
constraint: ℘ = ∞supp( ) (0, ); (T3)—normalization: ∫ ℘ =z z( )d 1; (T4)—scaling:

∫ ℘ =z z z( )d 1; and finally (T5)—continuity: ℘ ∈ +Cz( ) ( ). We remark that the scaling
criterion T4 can be understood as optional.

In addition to these properties, some other requirements can be derived from recent
knowledge about the microscopic structure of vehicular samples. As is apparent from many
scientific sources (see [9, 10, 15, 17–25]), the spatial or temporal headway/clearance dis-
tributions (analyzed for congested traffic streams) show a heavy plateau located near the
origin (see the figure 3 and the inset of the figure 2). That plateau is usually explained as a
consequence of strong repulsions among closely occurring vehicles whose drivers make an
effort to prevent a possible crash. In fact, such a phenomenon can be proven rigorously.
Indeed, it is trivial to show that time–headway statistics have heavy left tails, because very
small headways are unrealistic (due to the lengths of vehicles and the limited speed). In this
case, there certainly exists a ε > 0 such that ε∀ ∈ −∞z ( , ):℘ =z( ) 0. Since the clearance is
in fact the headway reduced by the length of a car, the limit transition ε → +0 corresponds to
the headway → clearance transition. Accordingly, all clearance distributions measured in
states with congested traffic should obey the condition

∀ ∈ ℘ =+
→

−
+

q z zE( 1)—the origin plateau: : lim ( ) 0. (3)
z

q

0

Figure 2. The cumulated histogram of departure time clearances. The constituent signs
represent the cumulated probability density for scaled net time gaps detected among
neighboring cars leaving the intersections located as indicated in the legend. The
behavior of the cumulative distribution function near the origin is magnified in the
inset.

J. Phys. A: Math. Theor. 48 (2015) 015101 M Krbálek and J Šleis

4



This condition is (for the locally smooth densities δ℘ ∈ ∞Cz( ) (0, )) equivalent to the

conditions
℘ =+
z

d

d
(0 ) 0

m

m
for all ∈m N . Unfortunately, ℘ z( ) is not (as immediately follows

from the preceding material) an analytical function, which therefore means that its Taylor
expansion about the point zero is not allowed.

The second empirically inspired criterion is mathematically deduced from the con-
spicuous fact that all vehicular interactions are short/middle-ranged ones, i.e. the movements
of two sufficiently outlying cars are not correlated (even in congested traffic). Such statistical
ensembles used to be usually referred to as quasi-Poissonian. This terminology reflects the
common knowledge that a system is qualified as Poissonian (purely Poissonian) if all
associated subsystems are independent. In this case, the probability for the occurrence of
several elements inside the fixed (space or time) region conforms to a Poissonian distribution.
If the interactions among elements are restricted to several neighbors only, the Poissonian
nature of adjacent elements is destroyed. In contrast, outlying elements still behave inde-
pendently, which leads to the similarity between the distribution tail and that derived for
Poissonian ensembles. Therefore, the tails of related headway distributions (for pure and
quasi-Poissonian ensembles) show similar trends.

More formally: it is mathematically proven that all one-dimensional and purely Pois-
sonian systems have the same probability density for scaled headways. Such a density reads

Θ℘ = −z z( ) ( )e z. Likewise, all one-dimensional and quasi-Poissonian ensembles necessarily
produce headway distributions with tails of the same type. Such a special class of distribu-
tions is properly defined in the following definition.

Definition 4.1 A probability density ℘ z( ) (with the associated distribution function) is
called balanced if there exists ω > 0 such that

Figure 3. The graphical visualization of the origin plateau in the empirical clearance
distributions. The bars display the smoothed probability density for short traffic
clearances, and the first and second derivatives. The analyzed data (for traffic densities
between 40 and 60 vehicles per kilometer) have been extracted from extensive data
samples gauged on the two-lane freeway D1 (in the Czech Republic).
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ω∀ϰ > ℘ = +∞
→+∞

ϰz: lim ( )e , (4)
z

z

and

ω∀ϰ ∈ ℘ =
→+∞

ϰz(0, ): lim ( )e 0. (5)
z

z

The number ω is then called the balancing index and denoted by ℘inb( ). The class of
balanced distributions is denoted by ℬ.

As is evident, the family of balanced distributions and the family of heavy-tailed dis-
tributions (see [26, 27]) are disjoint. Thus, the intersection of ℬ and the class S of sub-
exponential distributions is empty. The same holds true also for the classes of fat-tailed and
long-tailed distributions. Therefore the class ℬ is a special subclass of light-tailed distribu-
tions. On the basis of an assumption that vehicular interactions are short/middle-ranged cases,
the empirical net time gap distributions should also fulfill (see [28] as well) a final criterion:

− ℘ ∈ ℬzE( 2) the balanced tail: ( ) . (6)

4. Functional candidate time clearance distributions

According to the previous explorations of empirical clearances near signalized intersections
[9–11, 13, 29, 30], the following noncomposite distribution models can be applied for
describing real-road headway statistics: the exponential distribution, Erlang distribution,
Nakagami distribution [31], log-normal distribution, and generalized inverse Gaussian dis-
tribution [32]. We emphasize that the exponential, Erlang, and generalized inverse Gaussian
distributions represent (in contrast to the Nakagami and log-normal distributions) theoretically
reasoned probability densities. Indeed, their forms have been derived as steady-state dis-
tributions for a local thermodynamic ensemble with short-ranged repulsions among the ele-
ments (see [33, 34]). After the scaling procedure, these distributions read as

Θ℘ = −z z( ) ( )e , (7)z
EXP

Θ ω
Γ ω

℘ = +
+

ω
ω ω

+
− +z z z( ) ( )

( 1)

( 1)
e , (8)z

ERL

1
( 1)

Θ
Γ

Γ

Γ

Γ
℘ =

+
−

+
−

+

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎡

⎣

⎢⎢⎢⎢

⎛
⎝

⎞
⎠

⎤

⎦

⎥⎥⎥⎥
z z z

m

m

m

m
z( ) 2 ( )

1

2

( )
exp

1

2

( )
, (9)m

m

mNAK
2 1

2

2 1

2

2
2

Θ
πσ

σ
σ

℘ = −
+⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

( )
z

z

z

z
( )

( )

2
exp

2 ln ( )

8
. (10)LN

2 2

2

Likewise, the additional probability density β℘ = − −z A z Dz( ) exp [ ]GIG (considered in the
articles [13, 15, 22, 24, 33] and analyzed in the book [32]) requires proper normalization and
scaling. Owing to the functional relation

∫ =
∞

− − t x xe e d ( ), (11)t

0
1

x
t
2
4

where  x( )1 stands for the Macdonald function of the first order—a solution of the modified
Bessel differential equation of the second kind (of order α ∈ )
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α″ + ′ − + =x y xy x y( ) 0,2 2 2 one can derive the value of the normalization constant

β β=−  ( )A
D

D2 2 . (12)1
1

Substituting = α αz x x x( ): e ( )x into the original Bessel equation, we obtain the differential
equation α α″ − + − ′ + − =xz x z z(2 2 1) (2 1) 0 which (together with the Cauchyʼs initial
conditions α= ′ = −z z(0) (0) (2 2) !!) provides a small-x approximation:

α
α

≈ − +
−α

α

α

− − ⎜ ⎟⎛
⎝

⎞
⎠x

x

x
( ) (2 2) !! 1

2

2 1

e
(13)

x1 2

that is more suitable than the well-known approximation ≈α α− x x( ) e x . Since the above-
mentioned integrals T3 and T4 fulfill the differential equation

∫ ∫= −
ϰ
∂
∂ϰ

∞
− −ϰ

∞
− −ϰν ν

x x xe e d
1

2
e e d , (14)x x

0 0
x x
2 2 2 2

the scaling condition (T4) can be reformulated (applying the approximation (13)) as the cubic
equation

ν ν νϰ + − ϰ − ϰ − =( )4 1 4 4 1 0. (15)3 2 2

Its real solution then provides a desired functional relation guaranteeing fulfillment of the
scaling condition. Such a relation is of the form

Figure 4. The calibration of the scaling constant β=D D ( ) in the generalized inverse
Gaussian distribution. The red, blue, and green curves represent the asymptotical
dependence (17), phenomenological approximation (18), and analytical approximation
(16), respectively. The crosses display numerical solutions of the scaling equality
∫ ∫℘ = ℘z z z z z( )d ( )dGIG GIG .
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β β

β
≈

+ + −β β
β

+ +⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟D

w4 ( ) 1

12
, (16)

w

16 40 1
( )

22

where β β β β β β β= + + + − + −( )w ( ) 4 16 60 3 48 132 3 39 13 3 2 3 2 . Asymptotical fea-

tures of the normalization dependence β=D D ( ) may be quantified by the relations

β β β β= ≈ + ≫
β→ +

D Dlim ( ) 1, ( )
3

2
( 1). (17)

0

The accuracy of the previous approximate calculations is demonstrated in figure 4, where the
numerically specified values D are confronted with the analytically and phenomenologically
specified values. To conclude, one can briefly summarize by saying that the relation

β β≈ + − β−
D ( )

3 e

2
(18)

represents a sufficient approximation of the scaling constant in the generalized inverse
Gaussian distribution, which means that the probability density

Θ
β β

β β℘ = − − = + − β−


⎡
⎣⎢

⎤
⎦⎥( )

z
D z

D z
Dz D( )

( )

2 2
exp ,

3 e

2
(19)GIG

1

completes the set of noncomposite probabilistic models convenient for the purposes of
this work.

In table 2, we summarize the relevant properties of all above-mentioned distributions. As
is apparent, the one and only probabilistic model fulfilling all the requisite criteria is the
model derived as a steady-state solution for the thermal-like vehicular simulator presented in
the articles [33] and [34]. The other distributions show at least one incompatibility with
theoretical requirements. However, all suggested functions can be used for comparing with
empirical clearance distributions gauged between neighboring vehicles leaving a chosen
signal-controlled intersection. For these purposes we define the generalized statistical distance

∫χ ε ε= ℘ −
∞

−z q z z z( ) ( ; ) ( ) e d (20)z

0

2 1

cumulating the weighted deviations between a theoretical one-parametric prediction ε℘ z( ; )
and the empirical frequency q(z). The optimal value of the estimated parameter ε̂ can then be
evaluated by minimizing the statistical distance (20), i.e.,

∫ε ε= ℘ −ε∈ ∞
∞

−z q z z zˆ argmin ( ; ) ( ) e d . (21)z
[0, )

0

2 1

The tangible results of such procedures are tabularized in tables 3 and 4 where optimal values
of the estimated parameters are summarized as well as minimum values of weighted statistical
distances (20) specified for the above-mentioned optimal parameters. We remark that the
weight factor ϕ = −z z z( ) exp [1 ] has been chosen (a) to eliminate the influence of long
clearances, (b) to suppress extremely short clearances, and finally (c) to increase the influence
of clearances that are close to the mean value. In addition, ϕ =⩾ zargmax ( ) 1z 0 and ϕ =(1) 1.
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5. The rigidity of quasi-poissonian ensembles

Configurations of vehicles in the neighborhood of an intersection used to be typically ana-
lyzed, as discussed in the previous sections, by means of statistical instruments applied to
gaps or time intervals between departures of succeeding cars (see [9–11, 13, 14]). Although
recent researchers have proposed certain candidate distance/time clearance distributions, a
way to evaluate such probabilistic models is still lacking. Concurrently, a felicitous evaluation
scheme has become available in random matrix theory [35]. Here a mathematical quantity
(called the spectral rigidity or number variance) is defined. This quantity surveys a structure
of eigenvalue clusters in ensembles of random matrices. The notable advantages of such an
approach are as follows:

1. The spectral rigidity quantifies (unlike the clearance distribution) an arrangement of
larger clusters of particles/cars/eigenvalues.

2. The functional formula for the rigidity is directly connected to the clearance distribution,
which could yield an interesting alternative for verifying newly suggested probabilistic
predictions against empirical data.

3. The geometric shapes of the rigidity curves are extremely simple.
4. The statistical analysis of spectral rigidity for data files is undemanding.
5. A slight change of a parameter in the clearance distribution leads to a marked change in

the graph of the rigidity, which demonstrates the strong sensitivity of rigidity testing. On
the other hand, the disadvantage of rigidity tests is a sensitivity to correlations among
headways. Two distributions with the same headway (with different levels of headway
correlations) can produce different slopes in the graph of the rigidity. This effect is
noticeably visible in figures 2 and 5 (compare the circles and diamonds in the two
figures). For these reasons, a rigidity test always has to be accompanied by a statistical
analysis of headways/clearances.

On reformulation within the bounds of traffic theory, the rigidity coincides with the
following interpretation. Consider a set ∈ …+z N{ : 1 }i of scaled time clearances between
each pair of subsequent cars. Since we suppose that the mean time gap taken over the
complete set is rescaled to 1, it holds that∑ == z Ni

N
i1 . After dividing the time interval N[0, )

into subintervals −k T kT[( 1) , ) of length T, one can define a new random variable nk(T)
representing the number of cars whose departure times belong to the kth subinterval. The
average value n T( ) taken over all possible subintervals is therefore

Table 2. Criteria of acceptability for various noncomposite probabilistic models.

Probability
density (T1) (T2) (T3) (T4) (T5) (E1) (E2)

℘ z( )EXP Yes Yes Yes Yes Yes No Yes
℘ z( )ERL Yes Yes Yes Yes Yes No Yes
℘ z( )NAK Yes Yes Yes Yes Yes No No

℘ z( )LN Yes Yes Yes Yes Yes Yes No

℘ z( )GIG Yes Yes Yes Yes Yes Yes Yes
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∑=
⌊ ⌋

=
=

⌊ ⌋
n T

N T
n T T( )

1
( ) , (22)

k

N T

k

1

where the integer part ⌊ ⌋N T stands for the number of all subintervals −k T kT[( 1) , )
included in the entire interval N[0, ). We suppose, for convenience, that N T is an integer.
The time rigidity Δ T( ) is then defined as

∑Δ = −
=

( )T
T

N
n T T( ) ( ) . (23)

k

N T

k

1

2

Provided that all variables are independent (which is not the general case), the formula (23)
represents the statistical variance of the number of vehicles passing a given fixed point (a
threshold of the intersection, typically) during the time interval T. In view of the fact that the
expected value n TE( ( )) and the average value n T( ) can differ (for systems of dependent
random variables), we will not use the term ‘variance’. It is self-evident that for ensembles of
equidistantly spaced elements, the statistical rigidity reads

Δ = − ⌊ ⌋ ⌊ ⌋ + −T T T T T( ) ( )( 1 ). (24)EQD

Denoting as ℘ z( )ℓ the distribution of net time gaps between +ℓ 2 cars (i.e.
℘ = ℘z z( ) ( )0 is the standard clearance distribution), one can define the cluster function

∑= ℘
=

∞
R z z( ) ( ), (25)

ℓ

ℓ

0

which is closely related to the random variable n(T)—the number of particles departing from
a chosen location during the time interval T. Indeed, the probability =n T ℓ[ ( ) ] that exactly
ℓ cars pass the stop line during an arbitrary time interval of length T can be expressed in terms
of multiclearance distributions ℘ z( )ℓ as

Table 3. Optimal values of parameters for various one-parametric probabilistic models.

Location ℘ z( )ERL ℘ z( )NAK ℘ z( )LN ℘ z( )GIG

Prague—cross-
road 1

ω =ˆ 4.8350 =m̂ 1.6619 σ =ˆ 0.41931 β =ˆ 2.0507

Prague—cross-
road 2

ω =ˆ 5.3017 =m̂ 1.7939 σ =ˆ 0.40551 β =ˆ 2.2489

Pardubice ω =ˆ 4.6100 =m̂ 1.6116 σ =ˆ 0.43015 β =ˆ 1.9172
Hradec Králové ω =ˆ 5.4536 =m̂ 1.8281 σ =ˆ 0.39985 β =ˆ 2.3195

Table 4. Statistical distances (20) for various one-parametric probabilistic models.

Location χ z( )EXP χ z( )ERL χ z( )NAK χ z( )LN χ z( )GIG

Prague—crossroad 1 5.9368 0.43766 0.83113 0.24556 0.27659
Prague—crossroad 2 6.5770 0.35958 0.75371 0.14868 0.17275
Pardubice 5.9281 0.28204 0.61882 0.11643 0.11985
Hradec Králové 6.5628 0.13128 0.42344 0.02901 0.02859
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∫ ∫= = − ℘ = = ℘ − ℘−( )n T z z n T ℓ z z z[ ( ) 0] 1 ( )d , [ ( ) ] ( ) ( ) d . (26)
T T

ℓ ℓ
0

0
0

1

Hence the average value of n(T) is

∫∑= = =
=

∞
n T ℓ n T ℓ R z zE( ( )) [ ( ) ] ( )d . (27)

ℓ

T

0
0

Furthermore,

∫∑= = = −
=

∞

( )n T ℓ n T ℓ S z R z zE ( ) [ ( ) ] (2 ( ) ( ))d , (28)
ℓ

T
2

0

2

0

where = ∑ ℘=
∞S z ℓ z( ) ( )ℓ ℓ0 . Since ⋆ = −R z R z S z R z( ) ( ) ( ) ( ) (as follows from rules derived

for functional convolutions), the rigidity can be computed via

∫ ∫

∑Δ = − =

= ⋆ + − +

=

∞

⎛
⎝⎜

⎞
⎠⎟

T ℓ T n T ℓ

R R z z T R z z T

( ) ( ) [ ( ) ]

2 ( )( )d 1 2 ( )d . (29)

ℓ

T T

0

2

0 0

2

Assuming an approximate equality ≈n T n TE( ( )) ( ), i.e.∫ ≈R z z T( )d
T

0
, and using the

convolution property ∫ ∫⋆ = ⋆R R z z R T R z z( )( )d ( ) ( )d
T T

0 0
, we obtain the closing formula

for the statistical rigidity:

∫Δ ≈ − − −T T T z R z z( ) 2 ( )(1 ( ))d . (30)
T

0

According to articles [24, 36], the Laplace image of cluster functions of quasi-Poissonian
ensembles analyzed in our paper, i.e. ensembles with balanced tails (see the definition 4.1),

Figure 5. The rigidity of empirical traffic data. The signs represent the statistical rigidity
Δ T( ) analyzed for clusters of cars leaving the intersections located according to the
legend. The dashed line and wavy line symbolize the statistical rigidities calculated for
ensembles of uncorrelated (34) and equidistantly spaced (24) particles, respectively.
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reads

ℒ =[ ]R p
p

( )
1
, (31)EXP

ω
ω

ω ω
ω

ℒ = = −
+

+ +
+

+
ω

+
+

−
ω+ 

⎜ ⎟⎛
⎝

⎞
⎠

( )[ ]R p
p

p
p( )

1

2( 1)

( 2)
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As the formula (30) can be rewritten in the form

Δ Θ Θ Θ≈ − ⋆ + ⋆T T T T T T T R T( ) 2 ( ) ( ) 2 ( ) ( ),

the linear trend Δ λ μ≈ +T T( ) near infinity may be revealed (after applying the Laplace
transformation) with the help of

λ μ+ ≈ − + ℒp p p p R p2 2 [ ]( ).2

Taylorʼs expansion for the function ℒp R p[ ]( ) then finalizes the process of rigidity
linearization. Hence the linear tails of the adjoint rigidities are given by

Δ =T T( ) , (34)EXP

Δ
ω

ω ω
ω

≈
+

+ +
+

T
T

( )
1

( 2)

6( 1)
, (35)ERL 2

Δ β
β

β β β β

β
≈ +

+
+

+ + +

+( )
( )
( )

T
D

D D
T

D D D D

D
( )

2

2 1

6 21 4 16

24 1 2
. (36)GIG 4

As is well known from random matrix theory, the linear asymptote Δ λ μ≈ +T T( )
(characterizing the course of the rigidity near infinity) demonstrates the short-ranged nature of
component interactions, which is in consonance with the general meaning of the driver
interactions. In fact, on investigating the statistical rigidity in vehicular samples, one can
detect typical linear tails in all data samples examined (see figure 5). Moreover, as expected,
the rigidities of all probabilistic models presented show linear tails, and for that reason one
can compare the related slopes λ with those obtained by analyzing empirical data. The
quantitative outcome of such a comparison is summarized in table 5, where we show the
values of the rigidity slopes λ obtained for the parameters (and models) summarized in
table 3. For completeness, we add that the statistical rigidities for exponential, Erlang, and
GIG distributions have been acquired analytically, whereas the Nakagami and log-normal
rigidities has been observed numerically.

6. Assessment of suggested probabilistic models

In the previous sections we have suggested and evaluated five probability distributions that
are broadly accepted as analytical vehicular headway distribution candidates. As
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demonstrated by the previous quantitative and qualitative evaluations, the choice of candidate
seems to be effortless. However, the selected evaluation criteria give stronger preference to
the log-normal and generalized inverse Gaussian models, because both of them fit the
empirical histograms in such a way that the statistical distance (20) becomes rapidly smaller
than that evaluated for exponential, Erlang, and Nakagami models. Furthermore, the asso-
ciated rigidities (empirical and log-normal/GIG) are also in a plausible correspondence.
Taking into consideration the theoretical and empirically inspired criteria (T1–T5 and
E1–E2), we can convincingly conclude that the best theoretical predictions for vehicular
departure times have been achieved by means of the probability density (19). Finally, we
recall that a great advantage of the GIG model is the fact that the proposed density is of socio-
physical essence. Indeed, the distribution (19) has been identified in the articles
[22, 28, 33, 34] as a steady-state distribution of a certain socio-physical traffic model. In
addition to that, the book [32] points out that the probability density (19) characterizes a
distribution of times between events in some renewal processes. These findings support the
final result of our evaluation procedure.

7. Leave-the-intersection models: the GCF scheme

In the following three sections we will propose three traffic models, aiming to explain the core
of departure clearance distributions, and in particular to reproduce the observed vehicular gap
distributions on signal-controlled crossroads. The first of them is based on the car-following
principles discussed in [9, 11, 20, 39, 40] and on the theory of the so-called Galton board (see
[37]). Such a model will be referred to as a GCF model. The parameters of the model and
brief explanations of them are summarized in table 6.

Consider N identical dimensionless particles located at the time t = 0 in sequentially
organized locations < < … < < <−x x x x 0N N 1 2 1 . Here the origin x = 0 represents an
intersection threshold. For brevity of the following notation, we denote the space headway in
front of the ℓth particle as rℓ, i.e., = −−r x x:ℓ ℓ ℓ1 . At the beginning of each realization of the
GCF algorithm, the initial velocities … ⩾v v v, , , 0N1 2 of all particles are set to zero and the
initial positions are randomized according to the selected distribution. Copying the approach
in [9], we introduce a Boolean variable Fℓ signaling whether the ℓth vehicle is in the starting-
up mode ( =F 1ℓ ) or not.

The simulating scheme is divided into three main modes: (1) the stopped mode, (2) the
starting-up mode, and (3) the moving mode. The latter is composed of three submodels: (3a)
the free-driving submode, (3b) the braking submode, and (3c) the car-following submode.
Dynamical rules for the transition of an ensemble from an original state (at the time t) to an

Table 5. The slope λ in the theoretical and empirical rigidities.

Location λintersection λEXP λERL λNAK λLN λGIG
Prague—

crossroad 1
0.1625 1.0000 0.1821 0.1706 0.1930 0.1873

Prague—
crossroad 2

0.3048 1.0000 0.1617 0.1474 0.1732 0.1738

Pardubice 0.1815 1.0000 0.1816 0.1720 0.2074 0.1961
Hradec

Králové
0.1691 1.0000 0.1573 0.1516 0.1658 0.1692
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updated state (at the time +t T, where T denotes the size of the simulation time step) are then
strictly derived from the above-mentioned modes.

7.1. The stopped mode

The entering condition for this mode is =v t( ) 0ℓ . The ℓth vehicle will enter the starting-up
mode at the time +t T (and +tF ( T)ℓ will be set to 1) if >r t g( )ℓ start; otherwise the vehicle
will continue in the actual mode.

7.2. The starting-up mode

If =tF ( ) 1ℓ , the move of the ℓth vehicle will be regulated by the starting-up rule. If
⩾v t w( )ℓ start, then the ℓth vehicle will enter the moving mode at the time +t T and +tF ( T)ℓ

will be set to 0. In contrast, if <v t w( )ℓ start, then + =tF ( T) : 0ℓ and

Θ+ = − +( )( )v t r t g v t a( T): ( ) ( ) T , (37)ℓ ℓ ℓmin start

where Θ x( ) is the Heaviside step-function.

7.3. The free-driving submode

If and only if ⩾v t w( )ℓ start and the distance headway r t( )ℓ becomes larger than the distance
limit gmax , then the vehicle enters the free-driving submode. Then

+ = +{ }v t v t a w( T) : min ( ) T, . (38)ℓ ℓ plus max

7.4. The braking submode

If and only if ⩾v t w( )ℓ start, <r t g( )ℓ max , and

− >
−

−v t v t
r t g

H
( ) ( )

( )
, (39)ℓ ℓ

ℓ
1

min

Table 6. Parameters of the GCF model.

Nomenclature General extent Option Description

wstart ∈ −[2, 3] m s 1 −2.7 m s 1 Velocity delimiting the starting mode

wmax ∈ −[10, 20] m s 1 −16 m s 1 Maximum velocity

astart ∈ −[2, 5] m s 2 −2 m s 2 Run-up acceleration

aplus >astart −4.4 m s 2 Maximum free-driving acceleration

aminus ≈ a2 plus
−7 m s 2 Maximum braking deceleration

gstart ∈[1, 3] m 2.2 m Minimum distance required for
moving off

gmin ∈(0, 1] m 0.5 m Minimum safety clearance

gmax >10 m 15 m Distance limit for free-driving mode

H ∈[1, 10] s 8 s Deceleration time
p ∈(0, 1) 0.38 Random-deceleration rate
ϑ ∈(0, 1) 0.8 Decelerating factor
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there is a risk of collision. Therefore the velocity must be reduced as follows:

+ = −{ }v t v t a( T) : max ( ) T, 0 . (40)ℓ ℓ minus

7.5. The car-following submode

If and only if ⩾v t w( )ℓ start, <r t g( )ℓ max , and

− ⩽
−

−v t v t
r t g

H
( ) ( )

( )
, (41)ℓ ℓ

ℓ
1

min

the driver carefully adapts his/her maneuvering to a previous car. Specifically, the Galton-
inspired stochastic update rule for the car-following process (see [37, 38]) is introduced:

ϑ

ϑ

+ =
−

…

−
… −

⎜ ⎟⎛
⎝

⎞
⎠

⎧

⎨
⎪⎪

⎩
⎪⎪

⎧⎨⎩
⎫⎬⎭

v t

r t

r t
v t p

r t

r t

v t
w p

T

2
:

( )

( T)
( ) with probability ,

max
( )

( T)

( )
, with probability 1 ,

(42)ℓ

ℓ

ℓ
ℓ

ℓ

ℓ

ℓ
start

+ = + +⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠
⎫⎬⎭v t v t a v t( T) : min ( ) T;

T

2
. (43)ℓ ℓ ℓplus

7.6. The forward-ordered update

Finally, the positions of particles are sequentially updated (in forwardly directed order) as
follows:

+ = + +x t x t v t( T) ( ) T · ( T). (44)ℓ ℓ ℓ

The above-mentioned update rules, defining the forward-ordered sequential dynamics of
the system, have been repeatedly applied to actual configurations until the last car has
intersected the stop line. Denoting the time at which the ℓth car has reached the measuring
point x = 0 as τℓ, one can intuitively define the scaled clearances as

τ τ
τ τ

= − −
−

∈ …−z N ℓ N( 1) ( {2, 3, , }). (45)ℓ
ℓ ℓ

N

1

1

These normalized time gaps are independent of the time step size T and represent the main
quantities investigated in this paper. Therefore, after repeated realizations of the GCF
algorithm (with the initialization N = 12 and =T 0.3), we can proceed to an expected
statistical evaluation. The graphical outputs of such an evaluation are visualized in figure 6.
Here one can compare the clearance distributions between empirical and GCF data (10 000
clearances), as well as the respective statistical rigidities. Although certain similarities can be
found there, deviations between the model and reality for the traffic are significant.

8. Leave-the-intersection models: the PLCF scheme

The second design for an intersection model (here called the phenomenological car-following
model) is based on the work [41] and the more recent results published in [18, 25]. Like in the
previous section, we firstly introduce all parameters of the model suggested (see table 7).

Our PLCF modification eliminates a slight illogicality in the original conception pre-
sented in [41]—namely, an occurrence of two vehicles moving with the same velocities and
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with zero clearance (i.e., cars moving like connected objects) is in fact extremely improbable.
Therefore, we eliminate such a circumstance by introducing a minimum (i.e., safety) bumper-
to-bumper distance gmin that is randomly chosen from the exponential distribution εExp ( )
with parameter ε > 0. Now, the simulation scheme replicates the general strategy of the GCF
model. Specifically, we consider N particles placed in locations

< < … < < <−x x x x 0N N 1 2 1 and moving with velocities … ⩾v v v, , , 0N1 2 . Again,
bumper-to-bumper distances are denoted by rℓ. Furthermore, we define the so-called safe
velocity

= +
− −

+
−

−
+ −

v t v t
r t g v t

( ) ( )
( ) T · ( )

T
, (46)ℓ

ℓ ℓ

v t v t

a

safe 1
min 1

( ) ( )

2

ℓ

ℓ

ℓ ℓ 1

minus

whose rigorous form is derived (see [41]) by requiring a collision-free condition and
limitedness of vehicular accelerations. By means of the safe-velocity approach, we can
express the desired velocity as

= +{ }v t w v t v t a( ) min ( ); ( ) T · . (47)ℓdes max; safe plusℓ ℓ

Then the randomly perturbed velocity (influenced by the phenomenological coefficient θ
suppressing the velocity variance in the ensemble) satisfies the equation

θ+ = −{ }( ))v t v t a v t( T) max 0; Uni ( ) · T · , ( ) , (48)ℓ des minus desℓ ℓ

where the symbol a bUni( , ) corresponds to the continuous uniform distribution on the
interval (a, b). Finally, the positions of particles are standardly updated (in the forwardly
directed order, again) according to

Figure 6. Clearance distributions and statistical rigidities for the GCF model. The main
plot compares the clearance distributions, between real-road data (Hradec Králové—
circles) and the Galton-inspired car-following model (the area plot) presented in the
text. The comparison between the statistical rigidities (for the same data ensembles) is
presented in the inset.
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+ = + +x t x t v t( T) ( ) T · ( T). (49)ℓ ℓ ℓ

The outputs of the PLCF model (obtained for the fixed initialization conditions N = 12 and
=T 0.2, and for a calibrated value of the suppression coefficient θ) are then subjected to

standard statistical tests for analyzing a microstructure of the particle ensemble. The results of
those tests are plotted in figure 7.

9. Leave-the-intersection models: the annealing-based scheme (AB scheme)

The intention of our article is, inter alia, to examine whether the arrangement of vehicles in
the vicinity of an intersection is a consequence of traffic rules, complicated evaluation pro-
cedures, and sophisticated decision-making procedures or, in contrast, is a consequence of the
general stochastic nature of queueing systems. For solving this problem, we intend to create a
stochastic alternative for both of the above-discussed models. Thus, we will introduce a
unimodal scheme simulating a time evolution of vehicular ensembles without any division
into modes (unlike for the GCF model) and without a concept of safe values for some
quantities (unlike for the PLCF model).

For these purposes, we have created an original model based on the principles of so-
called simulated annealing [42]. We consider N dimensionless particles located along a ring
with the circumference equal to N. The initial locations of the particles are generated equi-
distantly in the interval −N X[0, ], where X represents a free gap before the leading vehicle
(typically, the distance to the rear of a queue waiting on a previous intersection). The relative
velocities =v t( 0)ℓ of all of the vehicles are reset. Then the repeating procedure is applied as
follows.

(i) The timing is shifted by 1.
(ii) The quasi-energy of the ensemble is calculated via

∑=
−=

−

+
E t

x t x t
( )

1

( ) ( )
. (50)

ℓ

N

ℓ ℓ1

1

1

(iii) An index ∈ …ℓ N{1, 2, , } is picked at random.
(iv) The relative velocity vℓ is updated: + = +v t v t m( 1) min { ( ) 1 , 1}ℓ ℓ , where ∈m is

the fixed parameter (see table 8).
(v) Using the formula

η=
−

+
−+ −

U
x t x t x t x t( ) ( )

1

( ) ( )
, (51)ℓ

ℓ ℓ ℓ ℓ1 1

Table 7. Parameters of the PLCF model.

Nomenclature General extent Option Description

wmax ∈ −[10, 20] m s 1 −14 m s 1 Maximum allowable velocity

aplus ∈ −[3, 5] m s 2 −4.35 m s 2 Maximum free-driving acceleration

aminus ∈ −[4, 8] m s 2 −7 m s 2 Maximum braking deceleration

θ ∈[1 2, 1] 0.7 Suppression coefficient
gminℓ

>0 m ∈Exp (2 3) Individual safety clearance
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the individual quasi-potential of the ℓth vehicle is calculated. We remark that the
coefficient η reduces a influence of the vehicle behind.

(vi) A random number δ ∽ Uni(0, 1) is picked and an anticipated position

δ+ = + +x t x t w v t( 1) ( ) ( 1) (52)ℓ ℓ ℓmax

of the ℓth element is computed.
(vii) As the vehicles cannot change their order, we accept +x t( 1)ℓ only if

+ < −x t x t( 1) ( )ℓ ℓ 1 . Moreover, if + ⩾ −x t x t( 1) ( )ℓ ℓ 1 , then the relative velocity should
be reduced according to + = + −v t v t m( 1) : max {0, ( 1) 1 }ℓ ℓ .

(viii) The potential

η′ =
+ −

+
− ++ −

U
x t x t x t x t( 1) ( )

1

( ) ( 1)
(53)ℓ

ℓ ℓ ℓ ℓ1 1

of the new configuration is evaluated.
(ix) If ′ ⩽U Uℓ ℓ , then the position of the ℓth particle takes on a new value: +x t( 1)ℓ .
(x) If ′ >U Uℓ ℓ , then the Boltzmann factor γΔℏ = − Uexp[ ], where Δ = ′ −U U Uℓ ℓ, should be

compared with another random number ∽r Uni(0, 1). Provided that the inequality ℏ > r
is fulfilled, the position of the ℓth particle takes on the new value +x t( 1)ℓ too.
Otherwise, the original configuration remains unchanged, i.e. + =x t x t( 1) ( )ℓ ℓ . In this
case, the relative velocity is reduced again: + = + −v t v t m( 1) : max {0, ( 1) 1 }ℓ ℓ .

Although the classical scheme of the simulated annealing ensures a relaxation of the
ensemble into a thermal equilibrium (see [42]), here we are focused on nonequilibrium states
of the above-mentioned particle ensemble. Furthermore, the rules introduced modify the
original Metropolis algorithm so dramatically that even if the energy in a system had been
established standardly, the proposed scheme would still not lead to a state corresponding to a

Figure 7. Clearance distributions and statistical rigidities for the PLCF model. The
main plot compares the clearance distributions between real-road data (Hradec Králové
—circles) and the phenomenological car-following model (the area plot) presented in
the text. The comparison between the statistical rigidities (for the same data ensembles)
is presented in the inset.
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classical balance. Those facts are understandable from figure 8, where we investigate the time
evolution of the energy (50) in the ensemble. Thus, after 8000 steps (when 15 cars have left
the intersection), the system is still significantly far from any equilibrium, which is in con-
sonance with a realistic situation for vehicles.

Five hundred repetitions of that scheme then generated a sufficient amount of inter-
vehicle intervals suitable for the intended statistical evaluations. Nonequilibrium distributions
of rescaled time gaps in the suggested model (visualized in figure 9) demonstrate illustratively
a more significant compliance with real-road statistics than those detected in the previous two
models. Similarly, the test of the statistical rigidity (shown in the inset of figure 9) also
confirmed that the similarity between the AB model and intersection reality is not accidental.

At this point, it remains to say a few words about a connection of the suggested model
with realistic behavior of drivers. Although the modelʼs rules are formulated technically, their
background can be interpreted in quite ordinary language. In fact, the AB model is not much
more complicated than the model of Nagel and Schreckenberg [43], for example. The main
skeleton of the algorithm can be simplified as follows. The car chosen according to a random
update procedure tries to accelerate up to maximum velocity (iv) and leap forward by a
randomized hopping length (vi). Overtaking is not permitted (vii). Limiting conditions
(locations of neighboring cars) are reflected in the force description of the systems. Moreover,
the interaction forces/potentials (viii) correspond to an intuitive understanding of vehicular
dynamics. As in general physical systems, the ensemble of cars also tends to go pre-
dominantly to states with lower potential energy (ix). Nevertheless, since the system inves-
tigated is of a stochastic nature, its dynamics allows (with a probability proportional to the
level of stochasticity) transitions to states with higher energy (x), similarly to the randomi-
zation step in [43].

10. Discussion and concluding remarks

This paper deals with the theoretical and empirical background of vehicular dynamics
investigated in the vicinity of signal-controlled intersections. Such a specific area of traffic
research exploits the simplicity of inter-vehicle interactions near the traffic lights to obtain a
deeper understanding of general laws in vehicular dynamics. Indeed, some complicated traffic
phenomena are suppressed there, which provides a unique opportunity for disclosure of the
nature of the issue examined.

Since some features of driving behavior are readily predictable (e.g. the middle-ranged
nature of mutual interactions), one can formulate certain theoretically substantiated properties
of statistical distributions for microscopic vehicular quantities. Using also the well-known

Table 8. Parameters of the AB model.

Nomenclature General extent Option Description

N ∈ 36 Number of vehicles
m ∈ 10 Number of divisions in the velocity discretization
wmax ∈ m[2 , 2] 0.7 Maximum allowable velocity

γ ∈ +∞[0, ) 8.15 Randomization parameter
η ∈[0, 1] 0.3 Reduction coefficient (reduces the influence of

rear gaps)
X ∈ N(0, ) 10.8 Effective distance between intersections
ξ − −N X N( ) ( 1) 0.72 Average gap between neighbors in an initial state
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Figure 8. The time evolution of the quasi-energy during the AB algorithm. We plot the
average value of the quasi-energy (50) calculated for 500 repeated realizations of the
AB algorithm (green curve). For comparison purposes, we also display (see the red
curve) the evolution of the energy in a classical variant of the annealing procedure (the
so-called Metropolis algorithm) simulating a transition of thermal gases into
thermodynamical equilibrium. The gray curve demonstrates how the quasi-energy
(50) develops if one applies more than 8000 updates. The blue circle represents the
initial quasi-energy ξ= − −E N N N( 1) ( )ini

2 , whereas the gray arrow shows where
the leading car has reached the last car waiting at a following intersection.

Figure 9. The clearance distribution and statistical rigidity for the AB model. The main
plot compares the clearance distributions between Hradec Králové data (red circles)
and the annealing-based model (the area plot). The comparison between statistical
rigidities (for the same data ensembles) is visualized in the inset.
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empirical regularities in the microscopic structure of traffic samples, we have therefore for-
mulated several criteria for the acceptability of mathematical curves proposed for fitting
empirical histograms. Sequentially, these criteria can serve to measure the quality of the
suggested statistical models. Such evaluations have been tested on several families of dis-
tributions in the fourth section. As is evident from these tests, some previously proposed
functions are not suitable as estimators for headway statistics. In contrast, the generalized
inverse Gaussian distribution (19) (fulfilling all of the acceptance criteria) represents a rele-
vant theoretical prediction for empirical departure–headway statistics. Moreover, these find-
ings have been supported by theoretical and empirical study of the associated statistical
rigidities.

The detailed dynamics of vehicles passing the stop line at a signalized intersection has
been analyzed by means of three simulation schemes (based on three different approaches).
Although all of these microscopic simulators have produced similar departure statistics, the
comprehensive analyses (tests of the statistical rigidity) have uncovered some serious dis-
crepancies. The ability to reproduce empirical features of time intervals between two fol-
lowing cars has been confirmed only for the nonequilibrium model based on principles of the
simulated annealing. In this case, the consistency between empirical and numerically obtained
headways has also been accompanied by a correspondence between the two rigidities.

However, the final outcome of our considerations as regards the origin of the empirical
headway distributions is, in fact, extremely surprising. According to our observations, the
models with more conspicuous stochastic components (such as the AB scheme) produce more
relevant predictions than models stressing certain interaction rules and traffic modes (such as
GCF/PLCF schemes). For this reason, it can be speculated that the stochastic component of
the system examined dominates the interaction rules as well as the decision-making proce-
dure. Furthermore, it has been demonstrated that the original arrangement of vehicles (before
the green signal appears) is stochastically perturbed in an extremely short time. This fact is
clearly visible in the AB simulator, where the original equidistant sequencing of vehicles
(characterized by a wavy curve of statistical rigidity) is very quickly transformed into the
stochastic sequencing (characterized by a linear rigidity significantly distant from the above-
mentioned wavy curve). Also the time dependence of the quasi-energy shows the sharpest
changes immediately after the beginning of the simulation. All of these facts assure us that the
decisive factor for the movement of vehicular ensembles (near the stop line) is the
stochasticity.

To conclude, this paper, together with the article [13], gives a comprehensive view of the
spatiotemporal course of vehicular ensembles leaving a signalized intersection.
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