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MacDonald functions (modified second order Bessel functions) 𝐾𝑎(𝑥) for 𝑎 ∈ ℝ are defined as:

𝑥𝑎𝐾𝑎(𝑥) = 2𝑎−1ᜪ
∞

0
𝑦𝑎−1 expᙳ−

𝑥2

4𝑦
ᙴexp(−𝑦) d𝑦 (*)

Figure 1: MacDonald functions for 𝑎 ∈ {0, 1, 2, 3, 4, 5}

1. Prove the following reccurent relationships between MacDonald functions:

𝐾𝑎−1(𝑥) − 𝐾𝑎+1(𝑥) = −
2𝑎
𝑥
𝐾𝑎(𝑥) (ii)

𝐾𝑎′(𝑥) = −𝐾𝑎−1(𝑥) −
𝑎
𝑥
𝐾𝑎(𝑥) (iii)

2. Prove the following reccurent relationships between MacDonald functions:

𝐾𝑎−1(𝑥) + 𝐾𝑎+1(𝑥) = − 2𝐾𝑎′(𝑥) (iv)

𝐾𝑎′(𝑥) = −𝐾𝑎+1(𝑥) +
𝑎
𝑥
𝐾𝑎(𝑥) (v)

3. Derive all moments of the normal distribution. at is derive

𝜇2𝑘(𝑁(𝜇, 𝜎)) =
(2𝑘)!
(2𝑘)!!

· 𝜎2𝑘 (vi)

and the odd moments.
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Problems 1 and 2
It is advantageous to approach both of the first two tasks at the same time, because the system of
4 equations presented by them is overspecified. Let us therefore first select the set of independent
equations that will prove the whole system. If we add equations iii and v, we get

2𝐾𝑎′(𝑥) = −𝐾𝑎−1(𝑥) −
𝑎
𝑥
𝐾𝑎(𝑥) − 𝐾𝑎+1(𝑥) +

𝑎
𝑥
𝐾𝑎(𝑥)

2𝐾𝑎′(𝑥) = −𝐾𝑎−1(𝑥) − 𝐾𝑎+1(𝑥)
−2𝐾𝑎′(𝑥) = 𝐾𝑎−1(𝑥) + 𝐾𝑎+1(𝑥),

which is equation iv. erefore we get equation v ∧ equation iii ⇒ equation iv. Further, we can add
equations ii and iii to get

−𝐾𝑎+1(𝑥) +
𝑎
𝑥
𝐾𝑎(𝑥) = −

2𝑎
𝑥
𝐾𝑎(𝑥) + 𝐾𝑎′(𝑥)

−𝐾𝑎+1(𝑥) −
𝑎
𝑥
𝐾𝑎(𝑥) = 𝐾𝑎′(𝑥),

which is equation iii. erefore we get equation ii ∧ equation iii ⇒ equation v. In conclusion, we only
need to prove equations ii and iii to get the whole set.

Proof of Equation ii

Our objective is to prove

𝐾𝑎−1(𝑥) − 𝐾𝑎+1(𝑥) = −
2𝑎
𝑥
𝐾𝑎(𝑥).

We start by rewriting the integral

𝑎ᜪ
∞

0
𝑦𝑎−1 expᙳ−

𝑥2

4𝑎
ᙴexp(−𝑦) d𝑦

using integration by parts

ᜪ
∞

0
𝑓′(𝑦)𝑔(𝑦) d𝑦 = [𝑓(𝑦)𝑔(𝑦)]∞0 −ᜪ

∞

0
𝑓(𝑦)𝑔′(𝑦) d𝑦

and by seing

𝑓(𝑦) = 𝑦𝑎

𝑔(𝑦) = expᙳ−
𝑥2

4𝑦
ᙴ · exp(−𝑦)

for which the derivatives and the constant is

𝑓′(𝑦) = 𝑎𝑦𝑎−1

𝑔′(𝑦) =
𝑥2

4𝑦2
expᙳ−

𝑥2

4𝑦
ᙴexp(−𝑦) − expᙳ−

𝑥2

4𝑦
ᙴexp(−𝑦)

[𝑓(𝑦)𝑔(𝑦)]∞0 = 0,
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where we can use for instance L’Hopitals rule to justify the constant. We can recognise the le-hand
side ∫∞

0
𝑓′(𝑦)𝑔(𝑦) d𝑦 of the by parts rule to be our original integral. erefore we have

𝑎ᜪ
∞

0
𝑦𝑎−1 expᙳ−

𝑥2

4𝑎
ᙴexp(−𝑦) d𝑦 =

= ᜪ
∞

0
𝑦𝑎 expᙳ−

𝑥2

4𝑦
ᙴexp(−𝑦) −

𝑥2

4
ᜪ

∞

0
𝑦𝑎−2 expᙳ−

𝑥2

4𝑦
ᙴexp(−𝑦) d𝑦

Multiplying both sides by −2𝑎 / 𝑥𝑎+1 and leaving the term −2𝑎
𝑥  from the final form of equation  ii

aside, gives us

−
2𝑎
𝑥
2𝑎−1

𝑥𝑎
ᜪ

∞

0
𝑦𝑎−1 expᙳ−

𝑥2

4𝑎
ᙴexp(−𝑦) d𝑦 =

=
2𝑎−2

𝑥𝑎−1
ᜪ

∞

0
𝑦𝑎−2 expᙳ−

𝑥2

4𝑦
ᙴexp(−𝑦) d𝑦 −

2𝑎

𝑥𝑎+1
ᜪ

∞

0
𝑦𝑎 expᙳ−

𝑥2

4𝑦
ᙴexp(−𝑦) d𝑦

and we can recognise the terms of the final form of equation ii using definition *

−
2𝑎
𝑥
𝐾𝑎(𝑥) = 𝐾𝑎−1(𝑥) − 𝐾𝑎+1(𝑥)

and this concludes our proof. ∎

Proof of Equation iii

Our objective is to prove

𝐾𝑎′(𝑥) = −𝐾𝑎−1(𝑥) −
𝑎
𝑥
𝐾𝑎(𝑥).

Starting with the le-hand side of the definition relation * for a MacDonald function of the order 𝑎 and
making a derivative with respect to the variable 𝑥, leads us to

d
d𝑥

[𝑥𝑎𝐾𝑎(𝑥)] = 𝑎𝑥𝑎−1𝐾𝑎(𝑥) + 𝑥𝑎𝐾𝑎′(𝑥).

We continue by making the same derivative with respect to 𝑥 of the right hand side, but first we
need to check, whether it is possible to swap the order of integrating and differentiating, that is if the
following holds

d
d𝑥

ᚁ2𝑎−1ᜪ
∞

0
𝑦𝑎−1 expᙳ−

𝑥2

4𝑦
ᙴexp(−𝑦) d𝑦ᚂ = 2𝑎−1ᜪ

∞

0

d
d𝑥

ᚁ𝑦𝑎−1 expᙳ−
𝑥2

4𝑦
ᙴexp(−𝑦)ᚂd𝑦 =

= 2𝑎−1ᜪ
∞

0
𝑦𝑎−1 expᙳ−

𝑥2

4𝑦
ᙴexp(−𝑦)ᙝ−

𝑥
2𝑦
ᙞd𝑦 = − 2𝑎−2𝑥 · ᜪ

∞

0
𝑦𝑎−2 expᙳ−

𝑥2

4𝑦
ᙴexp(−𝑦) d𝑦.

e conditions for this swap are the existence of the partial derivative of the integrand almost
everywhere and it being continuous which is evident and the existence of an integrable function of 𝑦
dominating the absolute value of the derivative. But since −𝑥2

4𝑦 ≤ 0, we have 0 < expᘛ−𝑥2
4𝑦ᘜ < 1 and

our integrand is absolutely dominated by 𝑔(𝑦) = 𝑦𝑎−2 exp(−𝑦) ≤ 𝑦𝑎−2 and therefore is integrable.
We end up with the equation
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𝑎𝑥𝑎−1𝐾𝑎(𝑥) + 𝑥𝑎𝐾𝑎′(𝑥) = − 2𝑎−2𝑥 · ᜪ
∞

0
𝑦𝑎−2 expᙳ−

𝑥2

4𝑦
ᙴexp(−𝑦) d𝑦

and aer dividing both sides by 𝑥𝑎 we can recognise the MacDonald function of order 𝑎 − 1 on the
right hand side giving us

𝑎
𝑥
𝐾𝑎(𝑥) + 𝐾𝑎′(𝑥) = −𝐾𝑎−1(𝑥)

which is equation iii. ∎

Problem 3
We start by writing the probability distribution function of the normal distribution

𝑝(𝑥 | 𝜇, 𝜎) =
1√
2𝜋𝜎2

expᙳ−ᙝ
𝑥 − 𝜇√
2𝜎2

ᙞ
2

ᙴ.

e raw and central moments of a random variable 𝑋~𝑁(𝜇, 𝜎) are defined to be

𝜇′𝑛 = 𝐸[𝑋𝑛]

𝜇𝑛 = 𝐸ᗵ(𝑋 − 𝐸𝑋)𝑛ᗶ.

Using the linearity of the expected value (𝐸) and the binomial expansion, we can rewrite the central
moment as

𝜇𝑛 =᜵
𝑛

𝑘=0
ᘱ
𝑛
𝑘
ᘲ(−𝐸𝑋)𝑘𝐸ᘡ𝑋𝑛−𝑘ᘢ =᜵

𝑛

𝑘=0
ᘱ
𝑛
𝑘
ᘲ(−𝜇′1)

𝑘𝜇′𝑛−𝑘,

therefore it is sufficient to only calculate the raw moments. If we write the definition expression for
the raw moments and manipulate it a lile we can also rewrite it in terms of simpler objects like so

𝜇′𝑛 = ᜪ
ℝ
𝑥𝑛𝑝(𝑥 | 𝜇, 𝜎) d𝑥 =

1√
2𝜋𝜎2

ᜪ
ℝ
𝑥𝑛 expᙳ−ᙝ

𝑥 − 𝜇√
2𝜎2

ᙞ
2

ᙴd𝑥 =

= ᙡ𝑦 ≔ ᙝ
𝑥 − 𝜇√
2𝜎2

ᙞ;
√
2𝜎2 d𝑦 =d𝑥; 𝑥 = ᘛ

√
2𝜎2 · 𝑦 + 𝜇ᘜᙢ =

=
1√
𝜋
ᜪ
ℝ
ᘛ
√
2𝜎2 · 𝑦 + 𝜇ᘜ

𝑛
expᗯ−𝑦2ᗰ d𝑦 =

=
1√
𝜋
ᜪ
ℝ
ᙽ᜵

𝑛

𝑘=0
ᘱ
𝑛
𝑘
ᘲᘛ
√
2𝜎2 · 𝑦ᘜ

𝑘
· 𝜇𝑛−𝑘ᙾ · expᗯ−𝑦2ᗰ d𝑦 =

=
1√
𝜋
·᜵

𝑛

𝑘=0
ᘱ
𝑛
𝑘
ᘲ𝜇𝑛−𝑘 · ᘛ

√
2𝜎2ᘜ

𝑘
ᜪ
ℝ
𝑦𝑘 expᗯ−𝑦2ᗰ d𝑦.

At this point we can clearly recognise the Gaussian integral ∫
ℝ
𝑥𝑘 expᗯ−𝑥2ᗰ d𝑥 that appears in the

sum. We can calculate these integrals recursively. As a side note, we can see that for 𝑘 odd, the
integrand is an odd function and therefore the whole integral is equal to 0. Using the notation

𝐼𝑘 ≔ᜪ
ℝ
𝑥𝑘 expᗯ−𝑥2ᗰ d𝑥

we use the expansion through integration by parts as
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𝐼𝑘 = ᜪ
ℝ
𝑥𝑘 expᗯ−𝑥2ᗰ d𝑥 =

= ᙽ𝑓′(𝑥) = 𝑥𝑘; 𝑔(𝑥) = expᗯ−𝑥2ᗰ; 𝑓(𝑥) =
𝑥𝑘+1

𝑘 + 1
; 𝑔′(𝑥) = − 2𝑥 expᗯ−𝑥2ᗰᙾ =

= ᚁ
𝑥𝑘+1

𝑘 + 1
· expᗯ−𝑥2ᗰᚂ

+∞

−∞

+
2

𝑘 + 1
ᜪ
ℝ
𝑥𝑘+2 expᗯ−𝑥2ᗰ d𝑥 =

= 0 +
2

𝑘 + 1
· 𝐼𝑘+2 =

2
𝑘 + 1

· 𝐼𝑘+2.

We got to the recurrent relation

𝐼𝑘+2 =
𝑘 + 1
2

· 𝐼𝑘

for Gaussian integrals.

e only thing that is le to resolve for the solution to the whole system of integrals {𝐼2𝑛 | 𝑛 ∈ ℕ}
is 𝐼0 (keep in mind that the odd integrals 𝐼𝑘 are 0). We can do that in many ways. One way would
be by entering the complex plane, parametrizing a Cauchy rectangle curve that includes the 𝑥 axis
in the limit and using Cauchy’s theorem and the symmetry between the integrals along the rectangle
sides to show that 𝐼0 =

√
𝜋. A second way to do this would be by making the transition to polar

coordinates (this proof is originally by the famous Simeon Denis Poisson)

𝐼0 = ᜪ
ℝ
expᗯ−𝑥2ᗰ d𝑥 = 2 · ᜪ

∞

0
expᗯ−𝑥2ᗰ d𝑥 = 2 · ᜽ᜪ

∞

0
ᜪ

∞

0
exp(−(𝑥2 + 𝑦2)) d𝑥 d𝑦 =

= 2 · ᜽ᜪ
𝜋
2

0
ᜪ

∞

0
exp(−𝑟2) · 𝑟 d𝑟 d𝜃.

It should be easy to fill in the blanks le aer the demonstrated transition.

Another way is to use the normalisation of the normal distribution as a fact and realising that

𝐼0 = ᜪ
ℝ
expᗯ−𝑥2ᗰ d𝑥 = ᙽ𝑦 ≔ 𝑥 · ᘛ

√
2𝜎2ᘜ; 𝜎 ≡ ᜼1

2
ᙾ =

=
√
2𝜎2ᜪ

ℝ
expᙳ−ᙝ

𝑦√
2𝜎2

ᙞ
2

ᙴd𝑦 =
√
2𝜋𝜎2 · ᜪ

ℝ

1√
2𝜋𝜎2

expᙳ−ᙝ
𝑦√
2𝜎2

ᙞ
2

ᙴd𝑦 =

=
√
2𝜋𝜎2 · ᛺ 𝑝ᙳ𝑥 | 𝜇 = 0, 𝜎 = ᜼1

2
ᙴ᛺

𝐿1

=
√
2𝜋𝜎2 =

√
𝜋.

However, if we look at the formulation of the problem, we see that even this is not necessary, since
the relation we want to prove includes 𝜎2 which is the second central moment and it should could
be easily wrien in terms of 𝐼2 and continuing from there. Although this would be an elegant way
to dodge the need to provide a formula for the Gaussian integrals, we will use the raw moments
and therefore this would be unecessarily difficult. Capitalising on the recursive identity with the
knowledge of the value of 𝐼0 we get
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𝐼2𝑛 = 𝐼0 ·᜶
𝑛

𝑘=0

2𝑘 − 1
2

=
(2𝑛 − 1)!!

2𝑛
·
√
𝜋.

We le the computation of moments at the point

𝜇′𝑛 =
1√
𝜋
·᜵

𝑛

𝑘=0
ᘱ
𝑛
𝑘
ᘲ𝜇𝑛−𝑘 · ᘛ

√
2𝜎2ᘜ

𝑘
· 𝐼𝑘

and using the fact that for the odd indexes 𝐼𝑘 = 0 we get

𝜇′𝑛 =
1√
𝜋
·᜵
ᘏ𝑛2ᘐ

𝑘=0
ᙇ
2𝑛
2𝑘
ᙈ𝜇𝑛−2𝑘 · ᘛ

√
2𝜎2ᘜ

2𝑘
· 𝐼2𝑘 =

1√
𝜋
·᜵
ᘏ𝑛2ᘐ

𝑘=0
ᙇ
2𝑛
2𝑘
ᙈ𝜇𝑛−2𝑘 · ᗯ2𝜎2ᗰ𝑘 · 𝐼2𝑘 =

=᜵
ᘏ𝑛2ᘐ

𝑘=0
ᙇ
2𝑛
2𝑘
ᙈ𝜇𝑛−2𝑘 · 𝜎2𝑘(2𝑘 − 1)!!.

It is beneficial to make the further calculations for odd and even moments separately. Also we
will simplify by calculating moments for a centred normal distributed random variables (i.e. 𝜇 = 0).
erefore we have 𝑋~𝑁(0, 𝜎). e relation for odd moments translates for this specific situation to

𝜇′2𝑛+1 =᜵
𝑛

𝑘=0
ᙇ
2𝑛 + 1
2𝑘

ᙈ0(2𝑛+1)−2𝑘 · 𝜎2𝑘(2𝑘 − 1)!! = 0

and for the even moments we have

𝜇′2𝑛 =᜵
𝑛

𝑘=0
ᙇ
2𝑛
2𝑘
ᙈ02𝑛−2𝑘 · 𝜎2𝑘(2𝑘 − 1)!! = ᙇ

2𝑛
2𝑛
ᙈ𝜎2𝑛(2𝑛 − 1)!! = 𝜎2𝑛(2𝑛 − 1)!! =

(2𝑛)!
(2𝑛)!!

𝜎2𝑛,

which is the relation that we wanted to prove. ere is one more cheap generalisation, where we can
realise, that if 𝑋~𝑁(𝜇, 𝜎) then 𝑌 ≔ (𝑋 − 𝜇) = (𝑋 − 𝐸𝑋)~𝑁(0, 𝜎) and therefore, if we calculate
the central moment of 𝑋, we get

𝜇𝑛(𝑋) = 𝐸ᗵ(𝑋 − 𝐸𝑋)𝑛ᗶ = 𝐸[𝑌 𝑛] = 𝜇′𝑛(𝑌 ) =
⎩ᙿ
⎨
ᙿ⎧0 if (𝑛mod 2) ≡ 1

(2𝑛)!
(2𝑛)!!𝜎2𝑛 if (𝑛mod 2) ≡ 0

.
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